These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 25517795)

  • 1. Twin boundary-assisted lithium ion transport.
    Nie A; Gan LY; Cheng Y; Li Q; Yuan Y; Mashayek F; Wang H; Klie R; Schwingenschlogl U; Shahbazian-Yassar R
    Nano Lett; 2015 Jan; 15(1):610-5. PubMed ID: 25517795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic-scale observation of lithiation reaction front in nanoscale SnO2 materials.
    Nie A; Gan LY; Cheng Y; Asayesh-Ardakani H; Li Q; Dong C; Tao R; Mashayek F; Wang HT; Schwingenschlögl U; Klie RF; Yassar RS
    ACS Nano; 2013 Jul; 7(7):6203-11. PubMed ID: 23730945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lithiation-induced shuffling of atomic stacks.
    Nie A; Cheng Y; Zhu Y; Asayesh-Ardakani H; Tao R; Mashayek F; Han Y; Schwingenschlögl U; Klie RF; Vaddiraju S; Shahbazian-Yassar R
    Nano Lett; 2014 Sep; 14(9):5301-7. PubMed ID: 25158147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailoring lithiation behavior by interface and bandgap engineering at the nanoscale.
    Liu Y; Liu XH; Nguyen BM; Yoo J; Sullivan JP; Picraux ST; Huang JY; Dayeh SA
    Nano Lett; 2013 Oct; 13(10):4876-83. PubMed ID: 24000810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Situ Investigation of Li and Na Ion Transport with Single Nanowire Electrochemical Devices.
    Xu X; Yan M; Tian X; Yang C; Shi M; Wei Q; Xu L; Mai L
    Nano Lett; 2015 Jun; 15(6):3879-84. PubMed ID: 25989463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: an in situ transmission electron microscopy study.
    Liu XH; Huang S; Picraux ST; Li J; Zhu T; Huang JY
    Nano Lett; 2011 Sep; 11(9):3991-7. PubMed ID: 21859095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-coating regulated lithiation kinetics and degradation in silicon nanowires for lithium ion battery.
    Luo L; Yang H; Yan P; Travis JJ; Lee Y; Liu N; Piper DM; Lee SH; Zhao P; George SM; Zhang JG; Cui Y; Zhang S; Ban C; Wang CM
    ACS Nano; 2015 May; 9(5):5559-66. PubMed ID: 25893684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lithium insertion in nanostructured TiO(2)(B) architectures.
    Dylla AG; Henkelman G; Stevenson KJ
    Acc Chem Res; 2013 May; 46(5):1104-12. PubMed ID: 23425042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Visualization of the Pinning Effect of Planar Defects on Li Ion Insertion.
    Liu G; He Y; Liu Z; Wan H; Xu Y; Deng H; Yang H; Zhang JG; Sushko PV; Gao F; Wang C; Du Y
    Nano Lett; 2023 Aug; 23(15):6839-6844. PubMed ID: 37463412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple-stripe lithiation mechanism of individual SnO2 nanowires in a flooding geometry.
    Zhong L; Liu XH; Wang GF; Mao SX; Huang JY
    Phys Rev Lett; 2011 Jun; 106(24):248302. PubMed ID: 21770606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries.
    Gu M; Kushima A; Shao Y; Zhang JG; Liu J; Browning ND; Li J; Wang C
    Nano Lett; 2013 Nov; 13(11):5203-11. PubMed ID: 24079296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast electrochemical lithiation of individual Si nanowire anodes.
    Liu XH; Zhang LQ; Zhong L; Liu Y; Zheng H; Wang JW; Cho JH; Dayeh SA; Picraux ST; Sullivan JP; Mao SX; Ye ZZ; Huang JY
    Nano Lett; 2011 Jun; 11(6):2251-8. PubMed ID: 21563798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bi-functional nitrogen-doped carbon protective layer on three-dimensional RGO/SnO
    Yang D; Ren H; Wu D; Zhang W; Lou X; Wang D; Cao K; Gao Z; Xu F; Jiang K
    J Colloid Interface Sci; 2019 Apr; 542():81-90. PubMed ID: 30735890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-limiting lithiation in silicon nanowires.
    Liu XH; Fan F; Yang H; Zhang S; Huang JY; Zhu T
    ACS Nano; 2013 Feb; 7(2):1495-503. PubMed ID: 23272994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A theoretical study of surface lithium effects on the [111] SiC nanowires as anode materials.
    Tang X; Yan W; Gao T; Wang J; Liu Y; Qin X
    J Mol Model; 2024 Jul; 30(8):251. PubMed ID: 38967703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface modification of tin oxide through reduced graphene oxide as a highly efficient cathode material for magnesium-ion batteries.
    Asif M; Rashad M; Shah JH; Zaidi SDA
    J Colloid Interface Sci; 2020 Mar; 561():818-828. PubMed ID: 31771875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct-Write Lithiation of Silicon Using a Focused Ion Beam of Li
    McGehee WR; Strelcov E; Oleshko VP; Soles C; Zhitenev NB; McClelland JJ
    ACS Nano; 2019 Jul; 13(7):8012-8022. PubMed ID: 31283179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembled organic nanowires for high power density lithium ion batteries.
    Luo C; Huang R; Kevorkyants R; Pavanello M; He H; Wang C
    Nano Lett; 2014 Mar; 14(3):1596-602. PubMed ID: 24548267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.