These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 25517993)

  • 41. Characterization of the activity and folding of the glutathione transferase from Escherichia coli and the roles of residues Cys(10) and His(106).
    Wang XY; Zhang ZR; Perrett S
    Biochem J; 2009 Jan; 417(1):55-64. PubMed ID: 18778244
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synergistic interaction of glyceraldehydes-3-phosphate dehydrogenase and ArsJ, a novel organoarsenical efflux permease, confers arsenate resistance.
    Chen J; Yoshinaga M; Garbinski LD; Rosen BP
    Mol Microbiol; 2016 Jun; 100(6):945-53. PubMed ID: 26991003
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chlorothalonil-biotransformation by glutathione S-transferase of Escherichia coli.
    Kim YM; Park K; Jung SH; Choi JH; Kim WC; Joo GJ; Rhee IK
    J Microbiol; 2004 Mar; 42(1):42-6. PubMed ID: 15357291
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The role of GST omega in metabolism and detoxification of arsenic in clam Ruditapes philippinarum.
    Chen L; Wu H; Zhao J; Zhang W; Zhang L; Sun S; Yang D; Cheng B; Wang Q
    Aquat Toxicol; 2018 Nov; 204():9-18. PubMed ID: 30170209
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Catalytic and structural contributions for glutathione-binding residues in a Delta class glutathione S-transferase.
    Winayanuwattikun P; Ketterman AJ
    Biochem J; 2004 Sep; 382(Pt 2):751-7. PubMed ID: 15182230
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural characterization of the catalytic site of a Nilaparvata lugens delta-class glutathione transferase.
    Yamamoto K; Higashiura A; Hossain MT; Yamada N; Shiotsuki T; Nakagawa A
    Arch Biochem Biophys; 2015 Jan; 566():36-42. PubMed ID: 25497345
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An endophytic Kocuria palustris strain harboring multiple arsenate reductase genes.
    Zacaria Vital T; Román-Ponce B; Rivera Orduña FN; Estrada de Los Santos P; Vásquez-Murrieta MS; Deng Y; Yuan HL; Wang ET
    Arch Microbiol; 2019 Nov; 201(9):1285-1293. PubMed ID: 31256199
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Glutathione synthetase promotes the reduction of arsenate via arsenolysis of glutathione.
    Németi B; Anderson ME; Gregus Z
    Biochimie; 2012 Jun; 94(6):1327-33. PubMed ID: 22426003
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification of a triad of arginine residues in the active site of the ArsC arsenate reductase of plasmid R773.
    Shi J; Mukhopadhyay R; Rosen BP
    FEMS Microbiol Lett; 2003 Oct; 227(2):295-301. PubMed ID: 14592722
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular characterization of Alr1105 a novel arsenate reductase of the diazotrophic cyanobacterium Anabaena sp. PCC7120 and decoding its role in abiotic stress management in Escherichia coli.
    Pandey S; Shrivastava AK; Rai R; Rai LC
    Plant Mol Biol; 2013 Nov; 83(4-5):417-32. PubMed ID: 23836391
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Corynebacterium glutamicum survives arsenic stress with arsenate reductases coupled to two distinct redox mechanisms.
    Villadangos AF; Van Belle K; Wahni K; Dufe VT; Freitas S; Nur H; De Galan S; Gil JA; Collet JF; Mateos LM; Messens J
    Mol Microbiol; 2011 Nov; 82(4):998-1014. PubMed ID: 22032722
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Physiological response of Desulfurispirillum indicum S5 to arsenate and nitrate as terminal electron acceptors.
    Rauschenbach I; Bini E; Häggblom MM; Yee N
    FEMS Microbiol Ecol; 2012 Jul; 81(1):156-62. PubMed ID: 22404695
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032.
    Ordóñez E; Letek M; Valbuena N; Gil JA; Mateos LM
    Appl Environ Microbiol; 2005 Oct; 71(10):6206-15. PubMed ID: 16204540
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polynucleotide phosphorylase and mitochondrial ATP synthase mediate reduction of arsenate to the more toxic arsenite by forming arsenylated analogues of ADP and ATP.
    Németi B; Regonesi ME; Tortora P; Gregus Z
    Toxicol Sci; 2010 Oct; 117(2):270-81. PubMed ID: 20457661
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lysine-91 of the tetraheme c-type cytochrome CymA is essential for quinone interaction and arsenate respiration in Shewanella sp. strain ANA-3.
    Zargar K; Saltikov CW
    Arch Microbiol; 2009 Nov; 191(11):797-806. PubMed ID: 19760266
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Glutathione-dependent reduction of arsenate by glycogen phosphorylase a reaction coupled to glycogenolysis.
    Németi B; Gregus Z
    Toxicol Sci; 2007 Nov; 100(1):36-43. PubMed ID: 17693425
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Redox cycling of arsenic by the hydrothermal marine bacterium Marinobacter santoriniensis.
    Handley KM; Héry M; Lloyd JR
    Environ Microbiol; 2009 Jun; 11(6):1601-11. PubMed ID: 19226300
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Energetics of plasmid-mediated arsenate resistance in Escherichia coli.
    Mobley HL; Rosen BP
    Proc Natl Acad Sci U S A; 1982 Oct; 79(20):6119-22. PubMed ID: 6755463
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan.
    Liao VH; Chu YJ; Su YC; Hsiao SY; Wei CC; Liu CW; Liao CM; Shen WC; Chang FJ
    J Contam Hydrol; 2011 Apr; 123(1-2):20-9. PubMed ID: 21216490
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Role of Extracellular Polymeric Substances in Microbial Reduction of Arsenate to Arsenite by
    Zhou X; Kang F; Qu X; Fu H; Alvarez PJJ; Tao S; Zhu D
    Environ Sci Technol; 2020 May; 54(10):6185-6193. PubMed ID: 32315521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.