These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 25517993)

  • 81. Adventitious arsenate reductase activity of the catalytic domain of the human Cdc25B and Cdc25C phosphatases.
    Bhattacharjee H; Sheng J; Ajees AA; Mukhopadhyay R; Rosen BP
    Biochemistry; 2010 Feb; 49(4):802-9. PubMed ID: 20025242
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Prokaryotic arsenate reductase enhances arsenate resistance in Mammalian cells.
    Wu D; Tao X; Wu G; Li X; Liu P
    Recent Pat Food Nutr Agric; 2014; 6(2):73-81. PubMed ID: 25494643
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Plasmid-borne resistance to arsenate, arsenite, cadmium, and chloramphenicol in a Rhodococcus species.
    Dabbs ER; Sole GJ
    Mol Gen Genet; 1988 Jan; 211(1):148-54. PubMed ID: 3422704
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Forced evolution of glutathione S-transferase to create a more efficient drug detoxication enzyme.
    Gulick AM; Fahl WE
    Proc Natl Acad Sci U S A; 1995 Aug; 92(18):8140-4. PubMed ID: 7667259
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Transformation of Escherichia coli and protein expression using lipoplex mimicry.
    Yun CH; Bae CS; Ahn T
    Protein Expr Purif; 2016 Nov; 127():68-72. PubMed ID: 27416742
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Responses to arsenate stress by Comamonas sp. strain CNB-1 at genetic and proteomic levels.
    Zhang Y; Ma YF; Qi SW; Meng B; Chaudhry MT; Liu SQ; Liu SJ
    Microbiology (Reading); 2007 Nov; 153(Pt 11):3713-3721. PubMed ID: 17975079
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Structural and Functional Investigation of the Periplasmic Arsenate-Binding Protein ArrX from
    Poddar N; Badilla C; Maghool S; Osborne TH; Santini JM; Maher MJ
    Biochemistry; 2021 Feb; 60(6):465-476. PubMed ID: 33538578
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Homology Modeling and Probable Active Site Cavity Prediction of Uncharacterized Arsenate Reductase in Bacterial spp.
    Rahman MS; Hossain MS; Saha SK; Rahman S; Sonne C; Kim KH
    Appl Biochem Biotechnol; 2021 Jan; 193(1):1-18. PubMed ID: 32809107
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Formation of an adduct between fosfomycin and glutathione: a new mechanism of antibiotic resistance in bacteria.
    Arca P; Rico M; Braña AF; Villar CJ; Hardisson C; Suárez JE
    Antimicrob Agents Chemother; 1988 Oct; 32(10):1552-6. PubMed ID: 3056239
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A Cyclopropene Electrophile that Targets Glutathione S-Transferase Omega-1 in Cells.
    Wørmer GJ; Hansen BK; Palmfeldt J; Poulsen TB
    Angew Chem Int Ed Engl; 2019 Aug; 58(34):11918-11922. PubMed ID: 31291041
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Solution structure of an arsenate reductase-related protein, YffB, from Brucella melitensis, the etiological agent responsible for brucellosis.
    Buchko GW; Hewitt SN; Napuli AJ; Van Voorhis WC; Myler PJ
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Sep; 67(Pt 9):1129-36. PubMed ID: 21904062
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The elusive roles of bacterial glutathione S-transferases: new lessons from genomes.
    Vuilleumier S; Pagni M
    Appl Microbiol Biotechnol; 2002 Feb; 58(2):138-46. PubMed ID: 11876405
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Mechanistic imperatives for the evolution of glutathione transferases.
    Armstrong RN
    Curr Opin Chem Biol; 1998 Oct; 2(5):618-23. PubMed ID: 9818188
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Identification of a possible respiratory arsenate reductase in Denitrovibrio acetiphilus, a member of the phylum Deferribacteres.
    Denton K; Atkinson MM; Borenstein SP; Carlson A; Carroll T; Cullity K; Demarsico C; Ellowitz D; Gialtouridis A; Gore R; Herleikson A; Ling AY; Martin R; McMahan K; Naksukpaiboon P; Seiz A; Yearwood K; O'Neill J; Wiatrowski H
    Arch Microbiol; 2013 Sep; 195(9):661-70. PubMed ID: 23955655
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Recruitment of genes and enzymes conferring resistance to the nonnatural toxin bromoacetate.
    Desai KK; Miller BG
    Proc Natl Acad Sci U S A; 2010 Oct; 107(42):17968-73. PubMed ID: 20921376
    [TBL] [Abstract][Full Text] [Related]  

  • 96. [Enzymes conjugated with glutathione and their importance in medicine].
    Rybarczyk H; Sanak M; Szczeklik A
    Pol Arch Med Wewn; 2001 Jun; 105(6):517-23. PubMed ID: 11865584
    [No Abstract]   [Full Text] [Related]  

  • 97. Indispensable or toxic? The phosphate versus arsenate debate.
    Huertas MJ; Michán C
    Microb Biotechnol; 2013 May; 6(3):209-11. PubMed ID: 23280010
    [No Abstract]   [Full Text] [Related]  

  • 98. Unraveling the inner workings of respiratory arsenate reductase.
    Stolz JF; Basu P
    Proc Natl Acad Sci U S A; 2018 Sep; 115(37):9051-9053. PubMed ID: 30150409
    [No Abstract]   [Full Text] [Related]  

  • 99. Glutathione and drug resistance.
    Schröder CP; Godwin AK; O'Dwyer PJ; Tew KD; Hamilton TC; Ozols RF
    Cancer Invest; 1996; 14(2):158-68. PubMed ID: 8597901
    [No Abstract]   [Full Text] [Related]  

  • 100. ARSENATE AS A CATALYST OF OXIDATION.
    Lyon CJ
    J Gen Physiol; 1927 Mar; 10(4):617-22. PubMed ID: 19872348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.