These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 25518675)

  • 21. Dissimilatory Fe(III) and Mn(IV) reduction.
    Lovley DR; Holmes DE; Nevin KP
    Adv Microb Physiol; 2004; 49():219-86. PubMed ID: 15518832
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Humic substances act as electron acceptor and redox mediator for microbial dissimilatory azoreduction by Shewanella decolorationis S12.
    Hong YG; Guo J; Xu ZC; Xu MY; Sun GP
    J Microbiol Biotechnol; 2007 Mar; 17(3):428-37. PubMed ID: 18050946
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Promoting nitrogen removal during Fe(III) reduction coupled to anaerobic ammonium oxidation (Feammox) by adding anthraquinone-2,6-disulfonate (AQDS).
    Yang Y; Peng H; Niu J; Zhao Z; Zhang Y
    Environ Pollut; 2019 Apr; 247():973-979. PubMed ID: 30823352
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fe(III) oxide reduction and carbon tetrachloride dechlorination by a newly isolated Klebsiella pneumoniae strain L17.
    Li XM; Zhou SG; Li FB; Wu CY; Zhuang L; Xu W; Liu L
    J Appl Microbiol; 2009 Jan; 106(1):130-9. PubMed ID: 19054230
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones.
    Bond DR; Lovley DR
    Environ Microbiol; 2002 Feb; 4(2):115-24. PubMed ID: 11972621
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fe(III)-enhanced anaerobic transformation of 2,4-dichlorophenoxyacetic acid by an iron-reducing bacterium Comamonas koreensis CY01.
    Wu CY; Zhuang L; Zhou SG; Li FB; Li XM
    FEMS Microbiol Ecol; 2010 Jan; 71(1):106-13. PubMed ID: 19895639
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Humics as an electron donor for anaerobic respiration.
    Lovley DR; Fraga JL; Coates JD; Blunt-Harris EL
    Environ Microbiol; 1999 Feb; 1(1):89-98. PubMed ID: 11207721
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Humic substance-mediated Fe(III) reduction by a fermenting Bacillus strain from the alkaline gut of a humus-feeding scarab beetle larva.
    Hobbie SN; Li X; Basen M; Stingl U; Brune A
    Syst Appl Microbiol; 2012 Jun; 35(4):226-32. PubMed ID: 22525666
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens.
    Mehta T; Coppi MV; Childers SE; Lovley DR
    Appl Environ Microbiol; 2005 Dec; 71(12):8634-41. PubMed ID: 16332857
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A role for excreted quinones in extracellular electron transfer.
    Newman DK; Kolter R
    Nature; 2000 May; 405(6782):94-7. PubMed ID: 10811225
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective enrichment of Geobacter sulfurreducens from anaerobic granular sludge with quinones as terminal electron acceptors.
    Cervantes FJ; Duong-Dac T; Ivanova AE; Roest K; Akkermans AD; Lettinga G; Field JA
    Biotechnol Lett; 2003 Jan; 25(1):39-45. PubMed ID: 12882304
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced biotic and abiotic transformation of Cr(vi) by quinone-reducing bacteria/dissolved organic matter/Fe(iii) in anaerobic environment.
    Huang B; Gu L; He H; Xu Z; Pan X
    Environ Sci Process Impacts; 2016 Sep; 18(9):1185-92. PubMed ID: 27421071
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of alternative electron acceptors on selenium(IV) reduction by Anaeromyxobacter dehalogenans.
    He Q; Yao K
    Bioresour Technol; 2011 Feb; 102(3):3578-80. PubMed ID: 21041077
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dissimilatory iron reduction in Escherichia coli: identification of CymA of Shewanella oneidensis and NapC of E. coli as ferric reductases.
    Gescher JS; Cordova CD; Spormann AM
    Mol Microbiol; 2008 May; 68(3):706-19. PubMed ID: 18394146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbial reduction of Fe(III)-bearing clay minerals in the presence of humic acids.
    Liu G; Qiu S; Liu B; Pu Y; Gao Z; Wang J; Jin R; Zhou J
    Sci Rep; 2017 Mar; 7():45354. PubMed ID: 28358048
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemotactic responses to metals and anaerobic electron acceptors in Shewanella oneidensis MR-1.
    Bencharit S; Ward MJ
    J Bacteriol; 2005 Jul; 187(14):5049-53. PubMed ID: 15995227
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reduction of U(VI) by Fe(II) in the presence of hydrous ferric oxide and hematite: effects of solid transformation, surface coverage, and humic acid.
    Jang JH; Dempsey BA; Burgos WD
    Water Res; 2008 Apr; 42(8-9):2269-77. PubMed ID: 18191438
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure of microbial communities performing the simultaneous reduction of Fe(II)EDTA.NO2- and Fe(III)EDTA -.
    Kumaraswamy R; Kuenen JG; Kleerebezem R; van Loosdrecht MC; Muyzer G
    Appl Microbiol Biotechnol; 2006 Dec; 73(4):922-31. PubMed ID: 16957895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anaerobic biodegradation of 1,4-dioxane by sludge enriched with iron-reducing microorganisms.
    Shen W; Chen H; Pan S
    Bioresour Technol; 2008 May; 99(7):2483-7. PubMed ID: 17884467
    [TBL] [Abstract][Full Text] [Related]  

  • 40. AQDS and Redox-Active NOM Enables Microbial Fe(III)-Mineral Reduction at cm-Scales.
    Bai Y; Mellage A; Cirpka OA; Sun T; Angenent LT; Haderlein SB; Kappler A
    Environ Sci Technol; 2020 Apr; 54(7):4131-4139. PubMed ID: 32108470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.