BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25518898)

  • 1. Hypothesis: bones toughness arises from the suppression of elastic waves.
    Davies B; King A; Newman P; Minett A; Dunstan CR; Zreiqat H
    Sci Rep; 2014 Dec; 4():7538. PubMed ID: 25518898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The weak interfaces within tough natural composites: experiments on three types of nacre.
    Khayer Dastjerdi A; Rabiei R; Barthelat F
    J Mech Behav Biomed Mater; 2013 Mar; 19():50-60. PubMed ID: 23084045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanofibril-mediated fracture resistance of bone.
    Tertuliano OA; Edwards BW; Meza LR; Deshpande VS; Greer JR
    Bioinspir Biomim; 2021 Apr; 16(3):. PubMed ID: 33470971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From brittle to ductile fracture of bone.
    Peterlik H; Roschger P; Klaushofer K; Fratzl P
    Nat Mater; 2006 Jan; 5(1):52-5. PubMed ID: 16341218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone as a Structural Material.
    Zimmermann EA; Ritchie RO
    Adv Healthc Mater; 2015 Jun; 4(9):1287-304. PubMed ID: 25865873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toughness and damage susceptibility in human cortical bone is proportional to mechanical inhomogeneity at the osteonal-level.
    Katsamenis OL; Jenkins T; Thurner PJ
    Bone; 2015 Jul; 76():158-68. PubMed ID: 25863123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale toughening mechanism of nacre tablet.
    Zhang N; Yang S; Xiong L; Hong Y; Chen Y
    J Mech Behav Biomed Mater; 2016 Jan; 53():200-209. PubMed ID: 26327454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ observation of nanograin rotation and deformation in nacre.
    Li X; Xu ZH; Wang R
    Nano Lett; 2006 Oct; 6(10):2301-4. PubMed ID: 17034101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales.
    Zimmermann EA; Schaible E; Bale H; Barth HD; Tang SY; Reichert P; Busse B; Alliston T; Ager JW; Ritchie RO
    Proc Natl Acad Sci U S A; 2011 Aug; 108(35):14416-21. PubMed ID: 21873221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale deformation mechanisms and yield properties of hydrated bone extracellular matrix.
    Schwiedrzik J; Taylor A; Casari D; Wolfram U; Zysset P; Michler J
    Acta Biomater; 2017 Sep; 60():302-314. PubMed ID: 28754646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Teleost fish scales amongst the toughest collagenous materials.
    Khayer Dastjerdi A; Barthelat F
    J Mech Behav Biomed Mater; 2015 Dec; 52():95-107. PubMed ID: 25457170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone Aging by Advanced Glycation End Products: A Multiscale Mechanical Analysis.
    Ganeko K; Masaki C; Shibata Y; Mukaibo T; Kondo Y; Nakamoto T; Miyazaki T; Hosokawa R
    J Dent Res; 2015 Dec; 94(12):1684-90. PubMed ID: 26310723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microtensile failure mechanisms in lamellar bone: Influence of fibrillar orientation, specimen size and hydration.
    Casari D; Kochetkova T; Michler J; Zysset P; Schwiedrzik J
    Acta Biomater; 2021 Sep; 131():391-402. PubMed ID: 34175475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone toughening through stress-induced non-collagenous protein denaturation.
    Wang Z; Vashishth D; Picu RC
    Biomech Model Mechanobiol; 2018 Aug; 17(4):1093-1106. PubMed ID: 29658056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring fracture toughness in biological materials.
    Taylor D
    J Mech Behav Biomed Mater; 2018 Jan; 77():776-782. PubMed ID: 28797745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs.
    Huang W; Restrepo D; Jung JY; Su FY; Liu Z; Ritchie RO; McKittrick J; Zavattieri P; Kisailus D
    Adv Mater; 2019 Oct; 31(43):e1901561. PubMed ID: 31268207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial Nacre with High Toughness Amplification Factor: Residual Stress-Engineering Sparks Enhanced Extrinsic Toughening Mechanisms.
    Meng YF; Zhu YB; Zhou LC; Meng XS; Yang YL; Zhao R; Xia J; Yang B; Lu YJ; Wu HA; Mao LB; Yu SH
    Adv Mater; 2022 Mar; 34(9):e2108267. PubMed ID: 34957604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone strength in children: understanding basic bone biomechanics.
    Forestier-Zhang L; Bishop N
    Arch Dis Child Educ Pract Ed; 2016 Feb; 101(1):2-7. PubMed ID: 26269494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multiscale fracture model to reveal the toughening mechanism in bioinspired Bouligand structures.
    Nie Y; Li D
    Acta Biomater; 2024 Mar; 176():267-276. PubMed ID: 38296014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nacre from mollusk shells: a model for high-performance structural materials.
    Barthelat F
    Bioinspir Biomim; 2010 Sep; 5(3):035001. PubMed ID: 20729573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.