These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 2551890)
1. Identification and sequence analysis of the Rhizobium meliloti dctA gene encoding the C4-dicarboxylate carrier. Engelke T; Jording D; Kapp D; Pühler A J Bacteriol; 1989 Oct; 171(10):5551-60. PubMed ID: 2551890 [TBL] [Abstract][Full Text] [Related]
2. Analysis of the C4-dicarboxylate transport genes of Rhizobium meliloti: nucleotide sequence and deduced products of dctA, dctB, and dctD. Watson RJ Mol Plant Microbe Interact; 1990; 3(3):174-81. PubMed ID: 2134335 [TBL] [Abstract][Full Text] [Related]
3. Analysis of C4-dicarboxylate transport genes in Rhizobium meliloti. Yarosh OK; Charles TC; Finan TM Mol Microbiol; 1989 Jun; 3(6):813-23. PubMed ID: 2546011 [TBL] [Abstract][Full Text] [Related]
4. Genetic analysis and regulation of the Rhizobium meliloti genes controlling C4-dicarboxylic acid transport. Wang YP; Birkenhead K; Boesten B; Manian S; O'Gara F Gene; 1989 Dec; 85(1):135-44. PubMed ID: 2695394 [TBL] [Abstract][Full Text] [Related]
5. Two C4-dicarboxylate transport systems in Rhizobium sp. NGR234: rhizobial dicarboxylate transport is essential for nitrogen fixation in tropical legume symbioses. van Slooten JC; Bhuvanasvari TV; Bardin S; Stanley J Mol Plant Microbe Interact; 1992; 5(2):179-86. PubMed ID: 1617199 [TBL] [Abstract][Full Text] [Related]
6. Molecular cloning and genetic organization of C4-dicarboxylate transport genes from Rhizobium leguminosarum. Ronson CW; Astwood PM; Downie JA J Bacteriol; 1984 Dec; 160(3):903-9. PubMed ID: 6094513 [TBL] [Abstract][Full Text] [Related]
7. Conservation between coding and regulatory elements of Rhizobium meliloti and Rhizobium leguminosarum dct genes. Jiang J; Gu BH; Albright LM; Nixon BT J Bacteriol; 1989 Oct; 171(10):5244-53. PubMed ID: 2793824 [TBL] [Abstract][Full Text] [Related]
8. Rhizobium meliloti and Rhizobium leguminosarum dctD gene products bind to tandem sites in an activation sequence located upstream of sigma 54-dependent dctA promoters. Ledebur H; Gu B; Sojda J; Nixon BT J Bacteriol; 1990 Jul; 172(7):3888-97. PubMed ID: 2193923 [TBL] [Abstract][Full Text] [Related]
9. Negative regulation of sigma 54-dependent dctA expression by the transcriptional activator DctD. Labes M; Finan TM J Bacteriol; 1993 May; 175(9):2674-81. PubMed ID: 8478332 [TBL] [Abstract][Full Text] [Related]
10. Overexpression of the dctA gene in Rhizobium meliloti: effect on transport of C4 dicarboxylates and symbiotic nitrogen fixation. Rastogi V; Labes M; Finan T; Watson R Can J Microbiol; 1992 Jun; 38(6):555-62. PubMed ID: 1504920 [TBL] [Abstract][Full Text] [Related]
11. Isolation and characterization of Azospirillum lipoferum locus that complements Rhizobium meliloti dctA and dctB mutations. Tripathi AK; Mishra BM Can J Microbiol; 1996 May; 42(5):503-6. PubMed ID: 8640608 [TBL] [Abstract][Full Text] [Related]
12. Relationships between C4 dicarboxylic acid transport and chemotaxis in Rhizobium meliloti. Robinson JB; Bauer WD J Bacteriol; 1993 Apr; 175(8):2284-91. PubMed ID: 8468289 [TBL] [Abstract][Full Text] [Related]
13. Inactivation and regulation of the aerobic C(4)-dicarboxylate transport (dctA) gene of Escherichia coli. Davies SJ; Golby P; Omrani D; Broad SA; Harrington VL; Guest JR; Kelly DJ; Andrews SC J Bacteriol; 1999 Sep; 181(18):5624-35. PubMed ID: 10482502 [TBL] [Abstract][Full Text] [Related]
14. Roles of DctA and DctB in signal detection by the dicarboxylic acid transport system of Rhizobium leguminosarum. Reid CJ; Poole PS J Bacteriol; 1998 May; 180(10):2660-9. PubMed ID: 9573150 [TBL] [Abstract][Full Text] [Related]
15. The membrane topology of the Rhizobium meliloti C4-dicarboxylate permease (DctA) as derived from protein fusions with Escherichia coli K12 alkaline phosphatase (PhoA) and beta-galactosidase (LacZ). Jording D; Pühler A Mol Gen Genet; 1993 Oct; 241(1-2):106-14. PubMed ID: 8232193 [TBL] [Abstract][Full Text] [Related]
16. Rhizobium leguminosarum nodulation gene (nod) expression is lowered by an allele-specific mutation in the dicarboxylate transport gene dctB. Mavridou A; Barny MA; Poole P; Plaskitt K; Davies AE; Johnston AW; Downie JA Microbiology (Reading); 1995 Jan; 141 ( Pt 1)():103-11. PubMed ID: 7894701 [TBL] [Abstract][Full Text] [Related]
17. Tandem DctD-binding sites of the Rhizobium meliloti dctA upstream activating sequence are essential for optimal function despite a 50- to 100-fold difference in affinity for DctD. Ledebur H; Nixon BT Mol Microbiol; 1992 Dec; 6(23):3479-92. PubMed ID: 1474893 [TBL] [Abstract][Full Text] [Related]
18. Utilization of orotate as a pyrimidine source by Salmonella typhimurium and Escherichia coli requires the dicarboxylate transport protein encoded by dctA. Baker KE; Ditullio KP; Neuhard J; Kelln RA J Bacteriol; 1996 Dec; 178(24):7099-105. PubMed ID: 8955389 [TBL] [Abstract][Full Text] [Related]
19. A rhizobial homolog of IHF stimulates transcription of dctA in Rhizobium leguminosarum but not in Sinorhizobium meliloti. Sojda J; Gu B; Lee J; Hoover TR; Nixon BT Gene; 1999 Oct; 238(2):489-500. PubMed ID: 10570977 [TBL] [Abstract][Full Text] [Related]
20. The Escherichia coli cAMP receptor protein (CRP) represses the Rhizobium meliloti dctA promoter in a cAMP-dependent fashion. Wang YP; Giblin L; Boesten B; O'Gara F Mol Microbiol; 1993 Apr; 8(2):253-9. PubMed ID: 8391103 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]