BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 25518984)

  • 1. Reducing THMFP by H2O2/UV oxidation for humic acid of small molecular weight.
    Yen HY; Yen LS
    Environ Technol; 2015; 36(1-4):417-23. PubMed ID: 25518984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of organic molecular weight on mineralization and energy consumption of humic acid by H2O2/UV oxidation.
    Yen HY; Kang SF
    Environ Technol; 2016 Sep; 37(17):2199-205. PubMed ID: 26824686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applicability of advanced oxidation processes in removing anthropogenically influenced chlorination disinfection byproduct precursors in a developing country.
    Tak S; Vellanki BP
    Ecotoxicol Environ Saf; 2019 Dec; 186():109768. PubMed ID: 31606645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced oxidation of bromide-containing drinking water: a balance between bromate and trihalomethane formation control.
    Wang Y; Yu J; Han P; Sha J; An T; Li W; Liu J; Yang M
    J Environ Sci (China); 2013 Nov; 25(11):2169-76. PubMed ID: 24552044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic cavitation in combination with the ozone, hydrogen peroxide and the UV-based advanced oxidation processes for the removal of natural organic matter from drinking water.
    Čehovin M; Medic A; Scheideler J; Mielcke J; Ried A; Kompare B; Žgajnar Gotvajn A
    Ultrason Sonochem; 2017 Jul; 37():394-404. PubMed ID: 28427649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen peroxide and ultraviolet irradiations in water treatment.
    Rudra A; Thacker NP; Pande SP
    Environ Monit Assess; 2005 Oct; 109(1-3):189-97. PubMed ID: 16240198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of natural organic matter degradation in water by UV/H2O2 treatment.
    Wang GS; Liao CH; Chen HW; Yang HC
    Environ Technol; 2006 Mar; 27(3):277-87. PubMed ID: 16548208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination of ferric and MIEX for the treatment of a humic rich water.
    Fearing DA; Banks J; Guyetand S; Monfort Eroles C; Jefferson B; Wilson D; Hillis P; Campbell AT; Parsons SA
    Water Res; 2004 May; 38(10):2551-8. PubMed ID: 15159158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trihalomethane formation potential of aquatic and terrestrial fulvic and humic acids: Sorption on activated carbon.
    Abouleish MY; Wells MJ
    Sci Total Environ; 2015 Jul; 521-522():293-304. PubMed ID: 25847173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of UV-based advanced oxidation processes for the removal of different fractions of NOM from drinking water.
    Yao Z; Wang M; Jia R; Zhao Q; Liu L; Sun S
    J Environ Sci (China); 2023 Apr; 126():387-395. PubMed ID: 36503765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ozone as a stand-alone and coagulation-aid treatment on the reduction of trihalomethanes precursors from high DOC and hardness water.
    Sadrnourmohamadi M; Gorczyca B
    Water Res; 2015 Apr; 73():171-80. PubMed ID: 25659964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transformation of dissolved organic matter during ozonation: effects on trihalomethane formation potential.
    Galapate RP; Baes AU; Okada M
    Water Res; 2001 Jun; 35(9):2201-6. PubMed ID: 11358299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of UV-fenton, UV-H2O2 and fenton reaction treatment of landfill leachate.
    Hu X; Wang X; Ban Y; Ren B
    Environ Technol; 2011 Jul; 32(9-10):945-51. PubMed ID: 21882548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the removal of humic acid by ultraviolet/persulfate advanced oxidation technology.
    Ji G; Sun S; Jia R; Liu J; Yao Z; Wang M; Zhao Q; Hou L
    Environ Sci Pollut Res Int; 2020 Jul; 27(21):26079-26090. PubMed ID: 32358745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of organic pollutants in drinking water on the removal of dimethyl phthalate by advanced oxidation processes].
    Rui M; Gao NY; Xu B; Li FS; Zhao JF; Le LS
    Huan Jing Ke Xue; 2006 Dec; 27(12):2495-501. PubMed ID: 17304847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UV and VUV photolysis vs. UV/H2O2 and VUV/H2O2, treatment for removal of clofibric acid from aqueous solution.
    Li W; Lu S; Qiu Z; Lin K
    Environ Technol; 2011 Jul; 32(9-10):1063-71. PubMed ID: 21882559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photodegradation of emerging micropollutants using the medium-pressure UV/H2O2 Advanced Oxidation Process.
    Shu Z; Bolton JR; Belosevic M; El Din MG
    Water Res; 2013 May; 47(8):2881-9. PubMed ID: 23517874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissolved organic carbon and trihalomethane precursor removal at a UK upland water treatment works.
    Gough R; Holliman PJ; Willis N; Freeman C
    Sci Total Environ; 2014 Jan; 468-469():228-39. PubMed ID: 24035843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of dissolved organic matter in terms of DOC, UV-254, SUVA and THMFP in industrial estate wastewater treated by stabilization ponds.
    Musikavong C; Wattanachira S
    Environ Monit Assess; 2007 Nov; 134(1-3):489-97. PubMed ID: 17975744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of trihalomethanes of dissolved organic matter fractions in reservoir and canal waters.
    Musikavong C; Srimuang K; Tachapattaworakul Suksaroj T; Suksaroj C
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Jul; 51(9):782-91. PubMed ID: 27166524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.