These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 2551900)

  • 1. Calmodulin regulates fodrin susceptibility to cleavage by calcium-dependent protease I.
    Harris AS; Croall DE; Morrow JS
    J Biol Chem; 1989 Oct; 264(29):17401-8. PubMed ID: 2551900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calmodulin and calcium-dependent protease I coordinately regulate the interaction of fodrin with actin.
    Harris AS; Morrow JS
    Proc Natl Acad Sci U S A; 1990 Apr; 87(8):3009-13. PubMed ID: 2326262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The calmodulin-binding site in alpha-fodrin is near the calcium-dependent protease-I cleavage site.
    Harris AS; Croall DE; Morrow JS
    J Biol Chem; 1988 Oct; 263(30):15754-61. PubMed ID: 2844821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. No evidence for calpain I involvement in fodrin rearrangements linked to regulated secretion.
    Perrin D; Söling HD
    FEBS Lett; 1992 Oct; 311(3):302-4. PubMed ID: 1397332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postischemic reperfusion induces alpha-fodrin proteolysis by m-calpain in the synaptosome and nucleus in rat brain.
    Fukuda S; Harada K; Kunimatsu M; Sakabe T; Yoshida K
    J Neurochem; 1998 Jun; 70(6):2526-32. PubMed ID: 9603218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three distinct phases of fodrin proteolysis induced in postischemic hippocampus. Involvement of calpain and unidentified protease.
    Yokota M; Saido TC; Tani E; Kawashima S; Suzuki K
    Stroke; 1995 Oct; 26(10):1901-7. PubMed ID: 7570746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of fodrin phosphorylation by spleen protein tyrosine kinase.
    Wang CY; Kong SK; Wang JH
    Biochemistry; 1988 Feb; 27(4):1254-60. PubMed ID: 3365386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of fodrin subunits by affinity chromatography on calmodulin-Sepharose.
    Glenney JR; Weber K
    Anal Biochem; 1985 Nov; 150(2):364-8. PubMed ID: 4091264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of brain spectrin to the 70-kDa neurofilament subunit protein.
    Frappier T; Regnouf F; Pradel LA
    Eur J Biochem; 1987 Dec; 169(3):651-7. PubMed ID: 3121319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autoproteolysis of the small subunit of calcium-dependent protease II activates and regulates protease activity.
    DeMartino GN; Huff CA; Croall DE
    J Biol Chem; 1986 Sep; 261(26):12047-52. PubMed ID: 3017960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Species differences in fodrin proteolysis in the ischemic brain.
    Kitagawa K; Matsumoto M; Saido TC; Ohtsuki T; Kuwabara K; Yagita Y; Mabuchi T; Yanagihara T; Hori M
    J Neurosci Res; 1999 Mar; 55(5):643-9. PubMed ID: 10082086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Similarities between the Mr 245,000 calmodulin-binding protein of the dogfish erythrocyte cytoskeleton and alpha-fodrin.
    Bartelt DC; Carlin RK; Scheele GA; Cohen WD
    Arch Biochem Biophys; 1984 Apr; 230(1):13-20. PubMed ID: 6324680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fodrin CaM-binding domain cleavage by Pet from enteroaggregative Escherichia coli leads to actin cytoskeletal disruption.
    Canizalez-Roman A; Navarro-García F
    Mol Microbiol; 2003 May; 48(4):947-58. PubMed ID: 12753188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-phase binding analysis of N-CAM interactions with brain fodrin.
    Woo MK; Murray BA
    Biochim Biophys Acta; 1994 Apr; 1191(1):173-80. PubMed ID: 8155673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+- and calmodulin-dependent stimulation of smooth muscle actomyosin Mg2+-ATPase by fodrin.
    Wang CY; Ngai PK; Walsh MP; Wang JH
    Biochemistry; 1987 Feb; 26(4):1110-7. PubMed ID: 2952165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of phospholipase D activity by fodrin. An active role for the cytoskeleton.
    Lukowski S; Lecomte MC; Mira JP; Marin P; Gautero H; Russo-Marie F; Geny B
    J Biol Chem; 1996 Sep; 271(39):24164-71. PubMed ID: 8798657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific cleavage of alpha-fodrin during Fas- and tumor necrosis factor-induced apoptosis is mediated by an interleukin-1beta-converting enzyme/Ced-3 protease distinct from the poly(ADP-ribose) polymerase protease.
    Cryns VL; Bergeron L; Zhu H; Li H; Yuan J
    J Biol Chem; 1996 Dec; 271(49):31277-82. PubMed ID: 8940132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequential degradation of alphaII and betaII spectrin by calpain in glutamate or maitotoxin-stimulated cells.
    Glantz SB; Cianci CD; Iyer R; Pradhan D; Wang KK; Morrow JS
    Biochemistry; 2007 Jan; 46(2):502-13. PubMed ID: 17209560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal fodrin proteolysis occurs independently of excitatory amino acid-induced neurotoxicity.
    Di Stasi AM; Gallo V; Ceccarini M; Petrucci TC
    Neuron; 1991 Mar; 6(3):445-54. PubMed ID: 1848081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain fodrin: substrate for calpain I, an endogenous calcium-activated protease.
    Siman R; Baudry M; Lynch G
    Proc Natl Acad Sci U S A; 1984 Jun; 81(11):3572-6. PubMed ID: 6328521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.