These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 25519052)

  • 1. Dirac Cones in two-dimensional conjugated polymer networks.
    Adjizian JJ; Briddon P; Humbert B; Duvail JL; Wagner P; Adda C; Ewels C
    Nat Commun; 2014 Dec; 5():5842. PubMed ID: 25519052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of stable three-dimensional Dirac semimetals with nontrivial topology.
    Yang BJ; Nagaosa N
    Nat Commun; 2014 Sep; 5():4898. PubMed ID: 25222476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two dimensional Dirac carbon allotropes from graphene.
    Xu LC; Wang RZ; Miao MS; Wei XL; Chen YP; Yan H; Lau WM; Liu LM; Ma YM
    Nanoscale; 2014 Jan; 6(2):1113-8. PubMed ID: 24296630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrically tunable multiple Dirac cones in thin films of the (LaO)2(SbSe2)2 family of materials.
    Dong XY; Wang JF; Zhang RX; Duan WH; Zhu BF; Sofo JO; Liu CX
    Nat Commun; 2015 Oct; 6():8517. PubMed ID: 26459498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional models of topological insulators: engineering of Dirac cones and robustness of the spin texture.
    Soriano D; Ortmann F; Roche S
    Phys Rev Lett; 2012 Dec; 109(26):266805. PubMed ID: 23368601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spawning rings of exceptional points out of Dirac cones.
    Zhen B; Hsu CW; Igarashi Y; Lu L; Kaminer I; Pick A; Chua SL; Joannopoulos JD; Soljačić M
    Nature; 2015 Sep; 525(7569):354-8. PubMed ID: 26352476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dirac point movement and topological phase transition in patterned graphene.
    Dvorak M; Wu Z
    Nanoscale; 2015 Feb; 7(8):3645-50. PubMed ID: 25636026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi.
    Liu ZK; Zhou B; Zhang Y; Wang ZJ; Weng HM; Prabhakaran D; Mo SK; Shen ZX; Fang Z; Dai X; Hussain Z; Chen YL
    Science; 2014 Feb; 343(6173):864-7. PubMed ID: 24436183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of covalent chemistry on the electronic structure and properties of carbon nanotubes and graphene.
    Bekyarova E; Sarkar S; Wang F; Itkis ME; Kalinina I; Tian X; Haddon RC
    Acc Chem Res; 2013 Jan; 46(1):65-76. PubMed ID: 23116475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Covalently-controlled properties by design in group IV graphane analogues.
    Jiang S; Arguilla MQ; Cultrara ND; Goldberger JE
    Acc Chem Res; 2015 Jan; 48(1):144-51. PubMed ID: 25490074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust Dirac-cone band structure in the molecular kagome compound (EDT-TTF-CONH2)6[Re6Se8(CN)6].
    Carlsson S; Zorina L; Allan DR; Attfield JP; Canadell E; Batail P
    Inorg Chem; 2013 Mar; 52(6):3326-33. PubMed ID: 23432439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic Band Engineering of Two-Dimensional Kagomé Polymers.
    Dettmann D; Sheverdyaeva PM; Hamzehpoor E; Franchi S; Galeotti G; Moras P; Ceccarelli C; Perepichka DF; Rosei F; Contini G
    ACS Nano; 2024 Jan; 18(1):849-857. PubMed ID: 38147033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning the Fermi velocity in Dirac materials with an electric field.
    Díaz-Fernández A; Chico L; González JW; Domínguez-Adame F
    Sci Rep; 2017 Aug; 7(1):8058. PubMed ID: 28808341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.
    Neupane M; Xu SY; Sankar R; Alidoust N; Bian G; Liu C; Belopolski I; Chang TR; Jeng HT; Lin H; Bansil A; Chou F; Hasan MZ
    Nat Commun; 2014 May; 5():3786. PubMed ID: 24807399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery and local-variation of Dirac cones in oxygen-intercalated graphene on Ru(0001) studied using scanning tunneling microscopy and spectroscopy.
    Jang WJ; Kim H; Jeon JH; Yoon JK; Kahng SJ
    Phys Chem Chem Phys; 2013 Oct; 15(38):16019-23. PubMed ID: 23958746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dirac Hierarchy in Acoustic Topological Insulators.
    Zheng LY; Christensen J
    Phys Rev Lett; 2021 Oct; 127(15):156401. PubMed ID: 34678007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new Dirac cone material: a graphene-like Be
    Wang B; Yuan S; Li Y; Shi L; Wang J
    Nanoscale; 2017 May; 9(17):5577-5582. PubMed ID: 28406258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Borophosphene: A New Anisotropic Dirac Cone Monolayer with a High Fermi Velocity and a Unique Self-Doping Feature.
    Zhang Y; Kang J; Zheng F; Gao PF; Zhang SL; Wang LW
    J Phys Chem Lett; 2019 Nov; 10(21):6656-6663. PubMed ID: 31608641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple Dirac cones and Lifshitz transition in a two-dimensional Cairo lattice as a Hawking evaporation analogue.
    Shao X; Sun L; Ma X; Feng X; Gao H; Ding C; Zhao M
    J Phys Condens Matter; 2021 Jul; 33(36):. PubMed ID: 34161939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust 2D topological insulators in van der Waals heterostructures.
    Kou L; Wu SC; Felser C; Frauenheim T; Chen C; Yan B
    ACS Nano; 2014 Oct; 8(10):10448-54. PubMed ID: 25226453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.