These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 25519188)

  • 21. The chsD and chsE genes of Aspergillus nidulans and their roles in chitin synthesis.
    Specht CA; Liu Y; Robbins PW; Bulawa CE; Iartchouk N; Winter KR; Riggle PJ; Rhodes JC; Dodge CL; Culp DW; Borgia PT
    Fungal Genet Biol; 1996 Jun; 20(2):153-67. PubMed ID: 8810520
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acceleration of anaerobic cysteine transformations to sulfane sulfur consequent to γ-glutamyl transpeptidase inhibition.
    Kwiecień I; Iciek M; Włodek L
    ScientificWorldJournal; 2012; 2012():253724. PubMed ID: 22629124
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 6-Hydroxydopamine-induced glutathione alteration occurs via glutathione enzyme system in primary cultured astrocytes.
    Zhang J; Hu J; Ding JH; Yao HH; Hu G
    Acta Pharmacol Sin; 2005 Jul; 26(7):799-805. PubMed ID: 15960885
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Null alleles of creA, the regulator of carbon catabolite repression in Aspergillus nidulans.
    Shroff RA; O'Connor SM; Hynes MJ; Lockington RA; Kelly JM
    Fungal Genet Biol; 1997 Aug; 22(1):28-38. PubMed ID: 9344629
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ammonia production by IMR-90 fibroblast cultures: effects of ammonia on glutathione, gamma-glutamyl transpeptidase, lysosomal enzymes, and cell division.
    Takahashi S; Nakagawa S; Zeydel M; Bhargava G
    J Cell Physiol; 1985 Oct; 125(1):107-14. PubMed ID: 2864350
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physiological and morphological changes in autolyzing Aspergillus nidulans cultures.
    Emri T; Molnár Z; Pusztahelyi T; Pócsi I
    Folia Microbiol (Praha); 2004; 49(3):277-84. PubMed ID: 15259768
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Production of cell wall-degrading enzymes by Aspergillus nidulans: a model system for fungal pathogenesis of plants.
    Dean RA; Timberlake WE
    Plant Cell; 1989 Mar; 1(3):265-73. PubMed ID: 2535501
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of formation of the intracellular beta-galactosidase activity of Aspergillus nidulans.
    Fekete E; Karaffa L; Sándor E; Seiboth B; Biró S; Szentirmai A; Kubicek CP
    Arch Microbiol; 2002 Dec; 179(1):7-14. PubMed ID: 12471499
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon catabolite repression in the regulation of beta-galactosidase activity in Aspergillus nidulans.
    Karaffa L; Fekete E; Sándor E; Sepsi A; Seiboth B; Szentirmai A; Kubicek CP
    Acta Microbiol Immunol Hung; 2002; 49(2-3):261-5. PubMed ID: 12109156
    [No Abstract]   [Full Text] [Related]  

  • 30. Isolation and characterization of the Aspergillus nidulans eglC gene encoding a putative beta-1,3-endoglucanase.
    Choi CJ; Ju HJ; Park BH; Qin R; Jahng KY; Han DM; Chae KS
    Fungal Genet Biol; 2005 Jul; 42(7):590-600. PubMed ID: 15950156
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ADHII in Aspergillus nidulans is induced by carbon starvation stress.
    Jones IG; Fairhurst V; Sealy-Lewis HM
    Fungal Genet Biol; 2001 Feb; 32(1):33-43. PubMed ID: 11277624
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Utilization of glutathione as an exogenous sulfur source is independent of gamma-glutamyl transpeptidase in the yeast Saccharomyces cerevisiae: evidence for an alternative gluathione degradation pathway.
    Kumar C; Sharma R; Bachhawat AK
    FEMS Microbiol Lett; 2003 Feb; 219(2):187-94. PubMed ID: 12620619
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional analysis of the C-II subgroup killer toxin-like chitinases in the filamentous ascomycete Aspergillus nidulans.
    Tzelepis GD; Melin P; Stenlid J; Jensen DF; Karlsson M
    Fungal Genet Biol; 2014 Mar; 64():58-66. PubMed ID: 24384382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional diversity of chitin synthases of Aspergillus nidulans in hyphal growth, conidiophore development and septum formation.
    Horiuchi H
    Med Mycol; 2009; 47 Suppl 1():S47-52. PubMed ID: 18651309
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Zn(II)2Cys6 putative Aspergillus nidulans transcription factor repressor of sexual development inhibits sexual development under low-carbon conditions and in submersed culture.
    Vienken K; Scherer M; Fischer R
    Genetics; 2005 Feb; 169(2):619-30. PubMed ID: 15520269
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A phosphoglucose isomerase mutant in Aspergillus nidulans is defective in hyphal polarity and conidiation.
    Upadhyay S; Shaw BD
    Fungal Genet Biol; 2006 Nov; 43(11):739-51. PubMed ID: 16798030
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbon catabolite repression.
    Kelly JM
    Prog Ind Microbiol; 1994; 29():355-67. PubMed ID: 7765133
    [No Abstract]   [Full Text] [Related]  

  • 38. Physiological characterisation of acuB deletion in Aspergillus niger.
    Meijer S; de Jongh WA; Olsson L; Nielsen J
    Appl Microbiol Biotechnol; 2009 Aug; 84(1):157-67. PubMed ID: 19444441
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CreA-mediated repression in Aspergillus nidulans does not require transcriptional auto-regulation, regulated intracellular localisation or degradation of CreA.
    Roy P; Lockington RA; Kelly JM
    Fungal Genet Biol; 2008 May; 45(5):657-70. PubMed ID: 18063396
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The chsB gene of Aspergillus nidulans is necessary for normal hyphal growth and development.
    Borgia PT; Iartchouk N; Riggle PJ; Winter KR; Koltin Y; Bulawa CE
    Fungal Genet Biol; 1996 Sep; 20(3):193-203. PubMed ID: 8953267
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.