BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 25519206)

  • 1. Nano-porous architecture of N-doped carbon nanorods grown on graphene to enable synergetic effects of supercapacitance.
    Fan HS; Wang H; Zhao N; Xu J; Pan F
    Sci Rep; 2014 Dec; 4():7426. PubMed ID: 25519206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage.
    Xu J; Wang K; Zu SZ; Han BH; Wei Z
    ACS Nano; 2010 Sep; 4(9):5019-26. PubMed ID: 20795728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ electrochemical polymerization of a nanorod-PANI-Graphene composite in a reverse micelle electrolyte and its application in a supercapacitor.
    Hu L; Tu J; Jiao S; Hou J; Zhu H; Fray DJ
    Phys Chem Chem Phys; 2012 Dec; 14(45):15652-6. PubMed ID: 23076399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors.
    Sarker AK; Hong JD
    Langmuir; 2012 Aug; 28(34):12637-46. PubMed ID: 22866750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors.
    Meng Y; Wang K; Zhang Y; Wei Z
    Adv Mater; 2013 Dec; 25(48):6985-90. PubMed ID: 24123419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors.
    Liu M; Miao YE; Zhang C; Tjiu WW; Yang Z; Peng H; Liu T
    Nanoscale; 2013 Aug; 5(16):7312-20. PubMed ID: 23821299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene-based nanowire supercapacitors.
    Chen Z; Yu D; Xiong W; Liu P; Liu Y; Dai L
    Langmuir; 2014 Apr; 30(12):3567-71. PubMed ID: 24588395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene oxide-supported carbon nanofiber-like network derived from polyaniline: A novel composite for enhanced glucose oxidase bioelectrode performance.
    Kang Z; Jiao K; Xu X; Peng R; Jiao S; Hu Z
    Biosens Bioelectron; 2017 Oct; 96():367-372. PubMed ID: 28535471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-step electrodeposition to layer-by-layer graphene-conducting-polymer hybrid films.
    Tang Y; Wu N; Luo S; Liu C; Wang K; Chen L
    Macromol Rapid Commun; 2012 Oct; 33(20):1780-6. PubMed ID: 22811399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manganese oxide nanowires wrapped with nitrogen doped carbon layers for high performance supercapacitors.
    Li Y; Mei Y; Zhang LQ; Wang JH; Liu AR; Zhang YJ; Liu SQ
    J Colloid Interface Sci; 2015 Oct; 455():188-93. PubMed ID: 26070189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical core/shell structure of MnO2@polyaniline composites grown on carbon fiber paper for application in pseudocapacitors.
    Yang M; Hong SB; Choi BG
    Phys Chem Chem Phys; 2015 Nov; 17(44):29874-9. PubMed ID: 26486195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous nitrogen-doped carbon nanosheet on graphene as metal-free catalyst for oxygen reduction reaction in air-cathode microbial fuel cells.
    Wen Q; Wang S; Yan J; Cong L; Chen Y; Xi H
    Bioelectrochemistry; 2014 Feb; 95():23-8. PubMed ID: 24239870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance asymmetric supercapacitor based on nanoarchitectured polyaniline/graphene/carbon nanotube and activated graphene electrodes.
    Shen J; Yang C; Li X; Wang G
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8467-76. PubMed ID: 23931572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stacked multilayers of alternating reduced graphene oxide and carbon nanotubes for planar supercapacitors.
    Moon GD; Joo JB; Yin Y
    Nanoscale; 2013 Dec; 5(23):11577-81. PubMed ID: 24114351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction.
    Liang J; Du X; Gibson C; Du XW; Qiao SZ
    Adv Mater; 2013 Nov; 25(43):6226-31. PubMed ID: 23963824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High capacitive performance of flexible and binder-free graphene-polypyrrole composite membrane based on in situ reduction of graphene oxide and self-assembly.
    Zhang J; Chen P; Oh BH; Chan-Park MB
    Nanoscale; 2013 Oct; 5(20):9860-6. PubMed ID: 23974163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-performance asymmetric supercapacitor based on hierarchical nanocomposites of polyaniline nanoarrays on graphene oxide and its derived N-doped carbon nanoarrays grown on graphene sheets.
    Tabrizi AG; Arsalani N; Mohammadi A; Ghadimi LS; Ahadzadeh I
    J Colloid Interface Sci; 2018 Dec; 531():369-381. PubMed ID: 30041114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-free electrochemical immunoassay for neuron specific enolase based on 3D macroporous reduced graphene oxide/polyaniline film.
    Zhang Q; Li X; Qian C; Dou L; Cui F; Chen X
    Anal Biochem; 2018 Jan; 540-541():1-8. PubMed ID: 29113785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode.
    Zhu G; He Z; Chen J; Zhao J; Feng X; Ma Y; Fan Q; Wang L; Huang W
    Nanoscale; 2014 Jan; 6(2):1079-85. PubMed ID: 24296659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ synthesized heteropoly acid/polyaniline/graphene nanocomposites to simultaneously boost both double layer- and pseudo-capacitance for supercapacitors.
    Cui Z; Guo CX; Yuan W; Li CM
    Phys Chem Chem Phys; 2012 Oct; 14(37):12823-8. PubMed ID: 22880204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.