These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 25519318)

  • 21. Exploring the potential benefits of stratified false discovery rates for region-based testing of association with rare genetic variation.
    Xu C; Ciampi A; Greenwood CM;
    Front Genet; 2014; 5():11. PubMed ID: 24523729
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Challenges and directions: an analysis of Genetic Analysis Workshop 17 data by collapsing rare variants within family data.
    Lin P; Hamm M; Hartz S; Zhang Z; Rice JP
    BMC Proc; 2011 Nov; 5 Suppl 9(Suppl 9):S30. PubMed ID: 22373451
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detecting associations of rare variants with common diseases: collapsing or haplotyping?
    Wang M; Lin S
    Brief Bioinform; 2015 Sep; 16(5):759-68. PubMed ID: 25596401
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluating methods for combining rare variant data in pathway-based tests of genetic association.
    Petersen A; Sitarik A; Luedtke A; Powers S; Bekmetjev A; Tintle NL
    BMC Proc; 2011 Nov; 5 Suppl 9(Suppl 9):S48. PubMed ID: 22373429
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A general method for combining different family-based rare-variant tests of association to improve power and robustness of a wide range of genetic architectures.
    Green A; Cook K; Grinde K; Valcarcel A; Tintle N
    BMC Proc; 2016; 10(Suppl 7):165-170. PubMed ID: 27980630
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Whole genome sequencing data from pedigrees suggests linkage disequilibrium among rare variants created by population admixture.
    Feng T; Zhu X
    BMC Proc; 2014; 8(Suppl 1):S44. PubMed ID: 25519326
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of rare variants for hypertension with incorporation of linkage information.
    Chiu YF; Chung RH; Lee CY; Kao HY; Hou L; Hsu FC
    BMC Proc; 2014; 8(Suppl 1):S109. PubMed ID: 25519312
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of rare disease variants in extended pedigrees using RVS.
    Sherman T; Fu J; Scharpf RB; Bureau A; Ruczinski I
    Bioinformatics; 2019 Jul; 35(14):2509-2511. PubMed ID: 30500888
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A clustering approach to identify rare variants associated with hypertension.
    Sun R; Deng Q; Hu I; Zee BC; Wang MH
    BMC Proc; 2016; 10(Suppl 7):153-157. PubMed ID: 27980628
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extended T(2) tests for longitudinal family data in whole genome sequencing studies.
    Liu Y; Xuan J; Wu Z
    BMC Proc; 2014; 8(Suppl 1 Genetic Analysis Workshop 18Vanessa Olmo):S40. PubMed ID: 25519385
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A haplotype-based framework for group-wise transmission/disequilibrium tests for rare variant association analysis.
    Chen R; Wei Q; Zhan X; Zhong X; Sutcliffe JS; Cox NJ; Cook EH; Li C; Chen W; Li B
    Bioinformatics; 2015 May; 31(9):1452-9. PubMed ID: 25568282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Powerful rare variant association testing in a copula-based joint analysis of multiple phenotypes.
    Konigorski S; Yilmaz YE; Janke J; Bergmann MM; Boeing H; Pischon T
    Genet Epidemiol; 2020 Jan; 44(1):26-40. PubMed ID: 31732979
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detecting disease association with rare variants in case-parents studies.
    Li YM; Xiang Y
    J Hum Genet; 2017 Apr; 62(5):549-552. PubMed ID: 28148922
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of several sequence-based association methods in pedigrees.
    Mathew G; George V; Xu H
    BMC Proc; 2014; 8(Suppl 1):S48. PubMed ID: 25519329
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A generalized least-squares framework for rare-variant analysis in family data.
    Li D; Rotter JI; Guo X
    BMC Proc; 2014; 8(Suppl 1 Genetic Analysis Workshop 18Vanessa Olmo):S28. PubMed ID: 25519378
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparing the power of family-based association tests for sequence data with applications in the GAW18 simulated data.
    Huang J; Chen Y; Swartz MD; Ionita-Laza I
    BMC Proc; 2014; 8(Suppl 1):S27. PubMed ID: 25519316
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of association tests for rare variants using simulated data sets in the Genetic Analysis Workshop 17 data.
    Chen W; Gao X; Wang J; Sun C; Wan W; Zhi D; Liu N; Chen X; Gao G
    BMC Proc; 2011; 5 Suppl 9(Suppl 9):S86. PubMed ID: 22373475
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Novel Statistic for Global Association Testing Based on Penalized Regression.
    Austin E; Shen X; Pan W
    Genet Epidemiol; 2015 Sep; 39(6):415-26. PubMed ID: 26282998
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A multistep approach to single nucleotide polymorphism-set analysis: an evaluation of power and type I error of gene-based tests of association after pathway-based association tests.
    Valcarcel A; Grinde K; Cook K; Green A; Tintle N
    BMC Proc; 2016; 10(Suppl 7):349-355. PubMed ID: 27980661
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Family-based association tests for rare variants with censored traits.
    Qi W; Allen AS; Li YJ
    PLoS One; 2019; 14(1):e0210870. PubMed ID: 30682063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.