These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 25519332)

  • 1. Detection of imprinting effects for hypertension based on general pedigrees utilizing all affected and unaffected individuals.
    Zhang F; Lin S
    BMC Proc; 2014; 8(Suppl 1):S52. PubMed ID: 25519332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonparametric method for detecting imprinting effect using all members of general pedigrees with missing data.
    Zhang F; Lin S
    J Hum Genet; 2014 Oct; 59(10):541-8. PubMed ID: 25119724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A powerful parent-of-origin effects test for qualitative traits on X chromosome in general pedigrees.
    Zou QL; You XP; Li JL; Fung WK; Zhou JY
    BMC Bioinformatics; 2018 Jan; 19(1):8. PubMed ID: 29304743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of parent-of-origin effects using general pedigree data.
    Zhou JY; Ding J; Fung WK; Lin S
    Genet Epidemiol; 2010 Feb; 34(2):151-8. PubMed ID: 19676055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel approach to detect parent-of-origin effects from pedigree data with application to Beckwith-Wiedemann syndrome.
    Shete S; Elston RC; Lu Y
    Ann Hum Genet; 2007 Nov; 71(Pt 6):804-14. PubMed ID: 17578507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of parent-of-origin effects for quantitative traits using general pedigree data.
    He HQ; Mao WG; Pan D; Zhou JY; Chen PY; Fung WK
    J Genet; 2014 Aug; 93(2):339-47. PubMed ID: 25189228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A powerful association test for qualitative traits incorporating imprinting effects using general pedigree data.
    Zhou JY; He HQ; You XP; Li SZ; Chen PY; Fung WK
    J Hum Genet; 2015 Feb; 60(2):77-83. PubMed ID: 25518739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parametric approach to genomic imprinting analysis with applications to Angelman's syndrome.
    Shete S; Zhou X
    Hum Hered; 2005; 59(1):26-33. PubMed ID: 15802919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic imprinting and linkage test for quantitative-trait Loci in extended pedigrees.
    Shete S; Zhou X; Amos CI
    Am J Hum Genet; 2003 Oct; 73(4):933-8. PubMed ID: 13680523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TLINKAGE-IMPRINT: a model-based approach to performing two-locus genetic imprinting analysis.
    Shete S; Zhou X
    Hum Hered; 2006; 62(3):145-56. PubMed ID: 17057404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Likelihood approach for detecting imprinting and in utero maternal effects using general pedigrees from prospective family-based association studies.
    Yang J; Lin S
    Biometrics; 2012 Jun; 68(2):477-85. PubMed ID: 22008205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide allele-specific methylation is enriched at gene regulatory regions in a multi-generation pedigree from the Norfolk Island isolate.
    Benton MC; Lea RA; Macartney-Coxson D; Sutherland HG; White N; Kennedy D; Mengersen K; Haupt LM; Griffiths LR
    Epigenetics Chromatin; 2019 Oct; 12(1):60. PubMed ID: 31594537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-chromosome genetic association test incorporating X-chromosome inactivation and imprinting effects.
    Liu W; Wang BQ; Liu-Fu G; Fung WK; Zhou JY
    J Genet; 2019 Nov; 98():. PubMed ID: 31767819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A statistical test for detecting parent-of-origin effects when parental information is missing.
    Sacco C; Viroli C; Falchi M
    Stat Appl Genet Mol Biol; 2017 Sep; 16(4):275-289. PubMed ID: 28862993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-marker family-based association analysis conditional on parental information.
    Chung RH; Martin ER
    Methods Mol Biol; 2012; 850():359-70. PubMed ID: 22307708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new model for parent-of-origin effect analyses applied to Brown Swiss cattle slaughterhouse data.
    Blunk I; Mayer M; Hamann H; Reinsch N
    Animal; 2017 Jul; 11(7):1096-1106. PubMed ID: 27919305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of parent-of-origin effects in nuclear families using haplotype analysis.
    Becker T; Baur MP; Knapp M
    Hum Hered; 2006; 62(2):64-76. PubMed ID: 17047336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification and genetic features of neonatal haemochromatosis: a study of 27 affected pedigrees and molecular analysis of genes implicated in iron metabolism.
    Kelly AL; Lunt PW; Rodrigues F; Berry PJ; Flynn DM; McKiernan PJ; Kelly DA; Mieli-Vergani G; Cox TM
    J Med Genet; 2001 Sep; 38(9):599-610. PubMed ID: 11546828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing Generality and Power of Rare-Variant Tests by Utilizing Extended Pedigrees.
    Sul JH; Cade BE; Cho MH; Qiao D; Silverman EK; Redline S; Sunyaev S
    Am J Hum Genet; 2016 Oct; 99(4):846-859. PubMed ID: 27666371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single Marker Family-Based Association Analysis Conditional on Parental Information.
    Chung RH; Kinnamon DD; Martin ER
    Methods Mol Biol; 2017; 1666():391-407. PubMed ID: 28980256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.