BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 25520186)

  • 21. Dimerization Mediated by a Divergent Forkhead-associated Domain Is Essential for the DNA Damage and Spindle Functions of Fission Yeast Mdb1.
    Luo S; Xin X; Du LL; Ye K; Wei Y
    J Biol Chem; 2015 Aug; 290(34):21054-21066. PubMed ID: 26160178
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distinct Roles for Condensin's Two ATPase Sites in Chromosome Condensation.
    Elbatsh AMO; Kim E; Eeftens JM; Raaijmakers JA; van der Weide RH; García-Nieto A; Bravo S; Ganji M; Uit de Bos J; Teunissen H; Medema RH; de Wit E; Haering CH; Dekker C; Rowland BD
    Mol Cell; 2019 Dec; 76(5):724-737.e5. PubMed ID: 31629658
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcription factors mediate condensin recruitment and global chromosomal organization in fission yeast.
    Kim KD; Tanizawa H; Iwasaki O; Noma K
    Nat Genet; 2016 Oct; 48(10):1242-52. PubMed ID: 27548313
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RNA pol II transcript abundance controls condensin accumulation at mitotically up-regulated and heat-shock-inducible genes in fission yeast.
    Nakazawa N; Sajiki K; Xu X; Villar-Briones A; Arakawa O; Yanagida M
    Genes Cells; 2015 Jun; 20(6):481-99. PubMed ID: 25847133
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell-Cycle Regulation of Dynamic Chromosome Association of the Condensin Complex.
    Thadani R; Kamenz J; Heeger S; Muñoz S; Uhlmann F
    Cell Rep; 2018 May; 23(8):2308-2317. PubMed ID: 29791843
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isolation of Fission Yeast Condensin Temperature-Sensitive Mutants with Single Amino Acid Substitutions Targeted to Hinge Domain.
    Xu X; Yanagida M
    G3 (Bethesda); 2019 May; 9(5):1777-1783. PubMed ID: 30914423
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The condensin holocomplex cycles dynamically between open and collapsed states.
    Ryu JK; Katan AJ; van der Sluis EO; Wisse T; de Groot R; Haering CH; Dekker C
    Nat Struct Mol Biol; 2020 Dec; 27(12):1134-1141. PubMed ID: 32989304
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cell cycle-dependent phosphorylation, nuclear localization, and activation of human condensin.
    Takemoto A; Kimura K; Yokoyama S; Hanaoka F
    J Biol Chem; 2004 Feb; 279(6):4551-9. PubMed ID: 14607834
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction between TBP and Condensin Drives the Organization and Faithful Segregation of Mitotic Chromosomes.
    Iwasaki O; Tanizawa H; Kim KD; Yokoyama Y; Corcoran CJ; Tanaka A; Skordalakes E; Showe LC; Noma K
    Mol Cell; 2015 Sep; 59(5):755-67. PubMed ID: 26257282
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization and dynamic analysis of Arabidopsis condensin subunits, AtCAP-H and AtCAP-H2.
    Fujimoto S; Yonemura M; Matsunaga S; Nakagawa T; Uchiyama S; Fukui K
    Planta; 2005 Oct; 222(2):293-300. PubMed ID: 15883832
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural mapping of the coiled-coil domain of a bacterial condensin and comparative analyses across all domains of life suggest conserved features of SMC proteins.
    Waldman VM; Stanage TH; Mims A; Norden IS; Oakley MG
    Proteins; 2015 Jun; 83(6):1027-45. PubMed ID: 25664627
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An interactive gene network for securin-separase, condensin, cohesin, Dis1/Mtc1 and histones constructed by mass transformation.
    Yuasa T; Hayashi T; Ikai N; Katayama T; Aoki K; Obara T; Toyoda Y; Maruyama T; Kitagawa D; Takahashi K; Nagao K; Nakaseko Y; Yanagida M
    Genes Cells; 2004 Nov; 9(11):1069-82. PubMed ID: 15507118
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural Basis for Dimer Formation of Human Condensin Structural Maintenance of Chromosome Proteins and Its Implications for Single-stranded DNA Recognition.
    Uchiyama S; Kawahara K; Hosokawa Y; Fukakusa S; Oki H; Nakamura S; Kojima Y; Noda M; Takino R; Miyahara Y; Maruno T; Kobayashi Y; Ohkubo T; Fukui K
    J Biol Chem; 2015 Dec; 290(49):29461-77. PubMed ID: 26491021
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potential roles of condensin in genome organization and beyond in fission yeast.
    Kim KD
    J Microbiol; 2021 May; 59(5):449-459. PubMed ID: 33877578
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deciphering condensin action during chromosome segregation.
    Cuylen S; Haering CH
    Trends Cell Biol; 2011 Sep; 21(9):552-9. PubMed ID: 21763138
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The structure and function of SMC and kleisin complexes.
    Nasmyth K; Haering CH
    Annu Rev Biochem; 2005; 74():595-648. PubMed ID: 15952899
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fission yeast condensin contributes to interphase chromatin organization and prevents transcription-coupled DNA damage.
    Kakui Y; Barrington C; Barry DJ; Gerguri T; Fu X; Bates PA; Khatri BS; Uhlmann F
    Genome Biol; 2020 Nov; 21(1):272. PubMed ID: 33153481
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deciphering the structure of the condensin protein complex.
    Krepel D; Cheng RR; Di Pierro M; Onuchic JN
    Proc Natl Acad Sci U S A; 2018 Nov; 115(47):11911-11916. PubMed ID: 30385633
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of a chromosome-targeting domain in the human condensin subunit CNAP1/hCAP-D2/Eg7.
    Ball AR; Schmiesing JA; Zhou C; Gregson HC; Okada Y; Doi T; Yokomori K
    Mol Cell Biol; 2002 Aug; 22(16):5769-81. PubMed ID: 12138188
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polo kinase regulates mitotic chromosome condensation by hyperactivation of condensin DNA supercoiling activity.
    St-Pierre J; Douziech M; Bazile F; Pascariu M; Bonneil E; Sauvé V; Ratsima H; D'Amours D
    Mol Cell; 2009 May; 34(4):416-26. PubMed ID: 19481522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.