These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 25520192)

  • 21. The RNAz web server: prediction of thermodynamically stable and evolutionarily conserved RNA structures.
    Gruber AR; Neuböck R; Hofacker IL; Washietl S
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W335-8. PubMed ID: 17452347
    [TBL] [Abstract][Full Text] [Related]  

  • 22. VADR: validation and annotation of virus sequence submissions to GenBank.
    Schäffer AA; Hatcher EL; Yankie L; Shonkwiler L; Brister JR; Karsch-Mizrachi I; Nawrocki EP
    BMC Bioinformatics; 2020 May; 21(1):211. PubMed ID: 32448124
    [TBL] [Abstract][Full Text] [Related]  

  • 23. deepBase v2.0: identification, expression, evolution and function of small RNAs, LncRNAs and circular RNAs from deep-sequencing data.
    Zheng LL; Li JH; Wu J; Sun WJ; Liu S; Wang ZL; Zhou H; Yang JH; Qu LH
    Nucleic Acids Res; 2016 Jan; 44(D1):D196-202. PubMed ID: 26590255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integration of bioinformatics and synthetic promoters leads to the discovery of novel elicitor-responsive cis-regulatory sequences in Arabidopsis.
    Koschmann J; Machens F; Becker M; Niemeyer J; Schulze J; Bülow L; Stahl DJ; Hehl R
    Plant Physiol; 2012 Sep; 160(1):178-91. PubMed ID: 22744985
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel method for the identification of conserved structural patterns in RNA: From small scale to high-throughput applications.
    Pietrosanto M; Mattei E; Helmer-Citterich M; Ferrè F
    Nucleic Acids Res; 2016 Oct; 44(18):8600-8609. PubMed ID: 27580722
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rfam: updates to the RNA families database.
    Gardner PP; Daub J; Tate JG; Nawrocki EP; Kolbe DL; Lindgreen S; Wilkinson AC; Finn RD; Griffiths-Jones S; Eddy SR; Bateman A
    Nucleic Acids Res; 2009 Jan; 37(Database issue):D136-40. PubMed ID: 18953034
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A systematic approach to RNA-associated motif discovery.
    Gao T; Shu J; Cui J
    BMC Genomics; 2018 Feb; 19(1):146. PubMed ID: 29444662
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recurrent structural RNA motifs, Isostericity Matrices and sequence alignments.
    Lescoute A; Leontis NB; Massire C; Westhof E
    Nucleic Acids Res; 2005; 33(8):2395-409. PubMed ID: 15860776
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural characterization of naturally occurring RNA single mismatches.
    Davis AR; Kirkpatrick CC; Znosko BM
    Nucleic Acids Res; 2011 Feb; 39(3):1081-94. PubMed ID: 20876693
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unifying evolutionary and thermodynamic information for RNA folding of multiple alignments.
    Seemann SE; Gorodkin J; Backofen R
    Nucleic Acids Res; 2008 Nov; 36(20):6355-62. PubMed ID: 18836192
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A memory efficient method for structure-based RNA multiple alignment.
    DeBlasio D; Bruand J; Zhang S
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(1):1-11. PubMed ID: 21576754
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A graph theoretical approach for predicting common RNA secondary structure motifs including pseudoknots in unaligned sequences.
    Ji Y; Xu X; Stormo GD
    Bioinformatics; 2004 Jul; 20(10):1591-602. PubMed ID: 14962926
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The art of editing RNA structural alignments.
    Andersen ES
    Methods Mol Biol; 2014; 1097():379-94. PubMed ID: 24639168
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of nucleotide patterns enriched in secreted RNAs as putative cis-acting elements targeting them to exosome nano-vesicles.
    Batagov AO; Kuznetsov VA; Kurochkin IV
    BMC Genomics; 2011 Nov; 12 Suppl 3(Suppl 3):S18. PubMed ID: 22369587
    [TBL] [Abstract][Full Text] [Related]  

  • 35. iPARTS2: an improved tool for pairwise alignment of RNA tertiary structures, version 2.
    Yang CH; Shih CT; Chen KT; Lee PH; Tsai PH; Lin JC; Yen CY; Lin TY; Lu CL
    Nucleic Acids Res; 2016 Jul; 44(W1):W328-32. PubMed ID: 27185896
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Statistical potentials for hairpin and internal loops improve the accuracy of the predicted RNA structure.
    Gardner DP; Ren P; Ozer S; Gutell RR
    J Mol Biol; 2011 Oct; 413(2):473-83. PubMed ID: 21889515
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Infernal 1.0: inference of RNA alignments.
    Nawrocki EP; Kolbe DL; Eddy SR
    Bioinformatics; 2009 May; 25(10):1335-7. PubMed ID: 19307242
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RNA structure alignment by a unit-vector approach.
    Capriotti E; Marti-Renom MA
    Bioinformatics; 2008 Aug; 24(16):i112-8. PubMed ID: 18689811
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RNA Sampler: a new sampling based algorithm for common RNA secondary structure prediction and structural alignment.
    Xu X; Ji Y; Stormo GD
    Bioinformatics; 2007 Aug; 23(15):1883-91. PubMed ID: 17537756
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rfam 11.0: 10 years of RNA families.
    Burge SW; Daub J; Eberhardt R; Tate J; Barquist L; Nawrocki EP; Eddy SR; Gardner PP; Bateman A
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D226-32. PubMed ID: 23125362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.