BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 25520215)

  • 1. Slow unloading leads to DNA-bound β2-sliding clamp accumulation in live Escherichia coli cells.
    Moolman MC; Krishnan ST; Kerssemakers JW; van den Berg A; Tulinski P; Depken M; Reyes-Lamothe R; Sherratt DJ; Dekker NH
    Nat Commun; 2014 Dec; 5():5820. PubMed ID: 25520215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competitive processivity-clamp usage by DNA polymerases during DNA replication and repair.
    López de Saro FJ; Georgescu RE; Goodman MF; O'Donnell M
    EMBO J; 2003 Dec; 22(23):6408-18. PubMed ID: 14633999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stoichiometry and architecture of active DNA replication machinery in Escherichia coli.
    Reyes-Lamothe R; Sherratt DJ; Leake MC
    Science; 2010 Apr; 328(5977):498-501. PubMed ID: 20413500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of opening a sliding clamp.
    Douma LG; Yu KK; England JK; Levitus M; Bloom LB
    Nucleic Acids Res; 2017 Sep; 45(17):10178-10189. PubMed ID: 28973453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-molecule visualization of fast polymerase turnover in the bacterial replisome.
    Lewis JS; Spenkelink LM; Jergic S; Wood EA; Monachino E; Horan NP; Duderstadt KE; Cox MM; Robinson A; Dixon NE; van Oijen AM
    Elife; 2017 Apr; 6():. PubMed ID: 28432790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of loading the Escherichia coli DNA polymerase processivity clamp.
    Bloom LB
    Crit Rev Biochem Mol Biol; 2006; 41(3):179-208. PubMed ID: 16760017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanism of DNA replication-coupled inactivation of the initiator protein in Escherichia coli: interaction of DnaA with the sliding clamp-loaded DNA and the sliding clamp-Hda complex.
    Su'etsugu M; Takata M; Kubota T; Matsuda Y; Katayama T
    Genes Cells; 2004 Jun; 9(6):509-22. PubMed ID: 15189445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A single-molecule approach to DNA replication in Escherichia coli cells demonstrated that DNA polymerase III is a major determinant of fork speed.
    Pham TM; Tan KW; Sakumura Y; Okumura K; Maki H; Akiyama MT
    Mol Microbiol; 2013 Nov; 90(3):584-96. PubMed ID: 23998701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are the SSB-Interacting Proteins RecO, RecG, PriA and the DnaB-Interacting Protein Rep Bound to Progressing Replication Forks in Escherichia coli?
    Bentchikou E; Chagneau C; Long E; Matelot M; Allemand JF; Michel B
    PLoS One; 2015; 10(8):e0134892. PubMed ID: 26244508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of polymerase collision release from sliding clamps on the lagging strand.
    Georgescu RE; Kurth I; Yao NY; Stewart J; Yurieva O; O'Donnell M
    EMBO J; 2009 Oct; 28(19):2981-91. PubMed ID: 19696739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fork-clearing role for UvrD.
    Florés MJ; Sanchez N; Michel B
    Mol Microbiol; 2005 Sep; 57(6):1664-75. PubMed ID: 16135232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alternative complexes formed by the Escherichia coli clamp loader accessory protein HolC (x) with replication protein HolD (ψ) and repair protein YoaA.
    Sutera VA; Weeks SJ; Dudenhausen EE; Baggett HBR; Shaw MC; Brand KA; Glass DJ; Bloom LB; Lovett ST
    DNA Repair (Amst); 2021 Apr; 100():103006. PubMed ID: 33582602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Escherichia coli dnaN159 mutant displays altered DNA polymerase usage and chronic SOS induction.
    Sutton MD
    J Bacteriol; 2004 Oct; 186(20):6738-48. PubMed ID: 15466025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Mutant β
    Homiski C; Scotland MK; Babu VMP; Chodavarapu S; Maul RW; Kaguni JM; Sutton MD
    J Bacteriol; 2021 Nov; 203(23):e0030321. PubMed ID: 34543108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-molecule analysis of the Escherichia coli replisome and use of clamps to bypass replication barriers.
    Georgescu RE; Yao NY; O'Donnell M
    FEBS Lett; 2010 Jun; 584(12):2596-605. PubMed ID: 20388515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of a sliding clamp on DNA.
    Georgescu RE; Kim SS; Yurieva O; Kuriyan J; Kong XP; O'Donnell M
    Cell; 2008 Jan; 132(1):43-54. PubMed ID: 18191219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A slow ATP-induced conformational change limits the rate of DNA binding but not the rate of beta clamp binding by the escherichia coli gamma complex clamp loader.
    Thompson JA; Paschall CO; O'Donnell M; Bloom LB
    J Biol Chem; 2009 Nov; 284(46):32147-57. PubMed ID: 19759003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An explanation for lagging strand replication: polymerase hopping among DNA sliding clamps.
    Stukenberg PT; Turner J; O'Donnell M
    Cell; 1994 Sep; 78(5):877-87. PubMed ID: 8087854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The G157C mutation in the Escherichia coli sliding clamp specifically affects initiation of replication.
    Johnsen L; Flåtten I; Morigen ; Dalhus B; Bjørås M; Waldminghaus T; Skarstad K
    Mol Microbiol; 2011 Jan; 79(2):433-46. PubMed ID: 21219462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recycling of single-stranded DNA-binding protein by the bacterial replisome.
    Spenkelink LM; Lewis JS; Jergic S; Xu ZQ; Robinson A; Dixon NE; van Oijen AM
    Nucleic Acids Res; 2019 May; 47(8):4111-4123. PubMed ID: 30767010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.