These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 25520215)

  • 21. Replication fork and SeqA focus distributions in Escherichia coli suggest a replication hyperstructure dependent on nucleotide metabolism.
    Molina F; Skarstad K
    Mol Microbiol; 2004 Jun; 52(6):1597-612. PubMed ID: 15186411
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein trafficking on sliding clamps.
    López de Saro F; Georgescu RE; Leu F; O'Donnell M
    Philos Trans R Soc Lond B Biol Sci; 2004 Jan; 359(1441):25-30. PubMed ID: 15065653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A bipartite polymerase-processivity factor interaction: only the internal beta binding site of the alpha subunit is required for processive replication by the DNA polymerase III holoenzyme.
    Dohrmann PR; McHenry CS
    J Mol Biol; 2005 Jul; 350(2):228-39. PubMed ID: 15923012
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cycling of Escherichia coli DNA polymerase III from one sliding clamp to another: model for lagging strand.
    Turner J; O'Donnell M
    Methods Enzymol; 1995; 262():442-9. PubMed ID: 8594368
    [No Abstract]   [Full Text] [Related]  

  • 25. Replisome dynamics and use of DNA trombone loops to bypass replication blocks.
    Yao NY; O'Donnell M
    Mol Biosyst; 2008 Nov; 4(11):1075-84. PubMed ID: 18931783
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamics of Proofreading by the E. coli Pol III Replicase.
    Park J; Jergic S; Jeon Y; Cho WK; Lee R; Dixon NE; Lee JB
    Cell Chem Biol; 2018 Jan; 25(1):57-66.e4. PubMed ID: 29104063
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A single subunit directs the assembly of the Escherichia coli DNA sliding clamp loader.
    Park AY; Jergic S; Politis A; Ruotolo BT; Hirshberg D; Jessop LL; Beck JL; Barsky D; O'Donnell M; Dixon NE; Robinson CV
    Structure; 2010 Mar; 18(3):285-92. PubMed ID: 20223211
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Division of labor--sequential ATP hydrolysis drives assembly of a DNA polymerase sliding clamp around DNA.
    Hingorani MM; Bloom LB; Goodman MF; O'Donnell M
    EMBO J; 1999 Sep; 18(18):5131-44. PubMed ID: 10487764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamics of the E. coli β-Clamp Dimer Interface and Its Influence on DNA Loading.
    Koleva BN; Gokcan H; Rizzo AA; Lim S; Jeanne Dit Fouque K; Choy A; Liriano ML; Fernandez-Lima F; Korzhnev DM; Cisneros GA; Beuning PJ
    Biophys J; 2019 Aug; 117(3):587-601. PubMed ID: 31349986
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA polymerase III-dependent repair synthesis in response to bleomycin in toluene-treated Escherichia coli.
    Ross SL; Sharma S; Moses RE
    Mol Gen Genet; 1980; 179(3):595-605. PubMed ID: 6160370
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dual functions, clamp opening and primer-template recognition, define a key clamp loader subunit.
    Magdalena Coman M; Jin M; Ceapa R; Finkelstein J; O'Donnell M; Chait BT; Hingorani MM
    J Mol Biol; 2004 Oct; 342(5):1457-69. PubMed ID: 15364574
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exchange between Escherichia coli polymerases II and III on a processivity clamp.
    Kath JE; Chang S; Scotland MK; Wilbertz JH; Jergic S; Dixon NE; Sutton MD; Loparo JJ
    Nucleic Acids Res; 2016 Feb; 44(4):1681-90. PubMed ID: 26657641
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A phage-encoded inhibitor of Escherichia coli DNA replication targets the DNA polymerase clamp loader.
    Yano ST; Rothman-Denes LB
    Mol Microbiol; 2011 Mar; 79(5):1325-38. PubMed ID: 21205014
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of Escherichia coli DNA polymerase I in conferring viability upon the dnaN159 mutant strain.
    Maul RW; Sanders LH; Lim JB; Benitez R; Sutton MD
    J Bacteriol; 2007 Jul; 189(13):4688-95. PubMed ID: 17449610
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distinct beta-clamp interactions govern the activities of the Y family PolIV DNA polymerase.
    Wagner J; Etienne H; Fuchs RP; Cordonnier A; Burnouf D
    Mol Microbiol; 2009 Dec; 74(5):1143-51. PubMed ID: 19843218
    [TBL] [Abstract][Full Text] [Related]  

  • 36. E. coli DNA replication in the absence of free β clamps.
    Tanner NA; Tolun G; Loparo JJ; Jergic S; Griffith JD; Dixon NE; van Oijen AM
    EMBO J; 2011 May; 30(9):1830-40. PubMed ID: 21441898
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamics of Open DNA Sliding Clamps.
    Oakley AJ
    PLoS One; 2016; 11(5):e0154899. PubMed ID: 27148748
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A case for sliding SeqA tracts at anchored replication forks during Escherichia coli chromosome replication and segregation.
    Brendler T; Sawitzke J; Sergueev K; Austin S
    EMBO J; 2000 Nov; 19(22):6249-58. PubMed ID: 11080170
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Beta sliding clamp dynamics within E. coli DNA polymerase III holoenzyme.
    O'Donnell M
    Ann N Y Acad Sci; 1994 Jul; 726():144-53; discussion 153-5. PubMed ID: 8092672
    [No Abstract]   [Full Text] [Related]  

  • 40. Impairment of lagging strand synthesis triggers the formation of a RuvABC substrate at replication forks.
    Flores MJ; Bierne H; Ehrlich SD; Michel B
    EMBO J; 2001 Feb; 20(3):619-29. PubMed ID: 11157768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.