These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 25520215)

  • 41. Beta sliding clamp dynamics within E. coli DNA polymerase III holoenzyme.
    O'Donnell M
    Ann N Y Acad Sci; 1994 Jul; 726():144-53; discussion 153-5. PubMed ID: 8092672
    [No Abstract]   [Full Text] [Related]  

  • 42. Impairment of lagging strand synthesis triggers the formation of a RuvABC substrate at replication forks.
    Flores MJ; Bierne H; Ehrlich SD; Michel B
    EMBO J; 2001 Feb; 20(3):619-29. PubMed ID: 11157768
    [TBL] [Abstract][Full Text] [Related]  

  • 43. RuvAB is essential for replication forks reversal in certain replication mutants.
    Baharoglu Z; Petranovic M; Flores MJ; Michel B
    EMBO J; 2006 Feb; 25(3):596-604. PubMed ID: 16424908
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Clamping down on transposon targeting.
    Chandler M
    Cell; 2009 Aug; 138(4):621-3. PubMed ID: 19703389
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Competition of bacteriophage polypeptides with native replicase proteins for binding to the DNA sliding clamp reveals a novel mechanism for DNA replication arrest in Staphylococcus aureus.
    Belley A; Callejo M; Arhin F; Dehbi M; Fadhil I; Liu J; McKay G; Srikumar R; Bauda P; Bergeron D; Ha N; Dubow M; Gros P; Pelletier J; Moeck G
    Mol Microbiol; 2006 Nov; 62(4):1132-43. PubMed ID: 17010157
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A review of DNA metabolism in Escherichia coli.
    Balbinder E; Waldren C
    Cell Biol Rev; 1991; 25(2):105-59. PubMed ID: 1764618
    [No Abstract]   [Full Text] [Related]  

  • 47. Crystal structures and biochemical characterization of DNA sliding clamps from three Gram-negative bacterial pathogens.
    McGrath AE; Martyn AP; Whittell LR; Dawes FE; Beck JL; Dixon NE; Kelso MJ; Oakley AJ
    J Struct Biol; 2018 Dec; 204(3):396-405. PubMed ID: 30366028
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Conservation of eubacterial replicases.
    Wijffels G; Dalrymple B; Kongsuwan K; Dixon NE
    IUBMB Life; 2005 Jun; 57(6):413-9. PubMed ID: 16012050
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Single-Molecule Observation of DNA Replication Repair Pathways in E. coli.
    Wollman AJ; Syeda AH; McGlynn P; Leake MC
    Adv Exp Med Biol; 2016; 915():5-16. PubMed ID: 27193534
    [TBL] [Abstract][Full Text] [Related]  

  • 50. DNA damage-induced replication fork regression and processing in Escherichia coli.
    Courcelle J; Donaldson JR; Chow KH; Courcelle CT
    Science; 2003 Feb; 299(5609):1064-7. PubMed ID: 12543983
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanism of processivity clamp opening by the delta subunit wrench of the clamp loader complex of E. coli DNA polymerase III.
    Jeruzalmi D; Yurieva O; Zhao Y; Young M; Stewart J; Hingorani M; O'Donnell M; Kuriyan J
    Cell; 2001 Aug; 106(4):417-28. PubMed ID: 11525728
    [TBL] [Abstract][Full Text] [Related]  

  • 52. DNA replication is the target for the antibacterial effects of nonsteroidal anti-inflammatory drugs.
    Yin Z; Wang Y; Whittell LR; Jergic S; Liu M; Harry E; Dixon NE; Kelso MJ; Beck JL; Oakley AJ
    Chem Biol; 2014 Apr; 21(4):481-487. PubMed ID: 24631121
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Initiation of chromosome replication controls both division and replication cycles in
    Witz G; van Nimwegen E; Julou T
    Elife; 2019 Nov; 8():. PubMed ID: 31710292
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analytical Ultracentrifugation for Analysis of Protein-Nucleic Acid Interactions.
    Bogutzki A; Curth U
    Methods Mol Biol; 2021; 2263():397-421. PubMed ID: 33877610
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The replicase sliding clamp dynamically accumulates behind progressing replication forks in Bacillus subtilis cells.
    Su'etsugu M; Errington J
    Mol Cell; 2011 Mar; 41(6):720-32. PubMed ID: 21419346
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A novel regulatory mechanism couples deoxyribonucleotide synthesis and DNA replication in Escherichia coli.
    Gon S; Camara JE; Klungsøyr HK; Crooke E; Skarstad K; Beckwith J
    EMBO J; 2006 Mar; 25(5):1137-47. PubMed ID: 16482221
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Measuring In Vivo Protein Dynamics Throughout the Cell Cycle Using Microfluidics.
    de Leeuw R; Brazda P; Charl Moolman M; Kerssemakers JWJ; Solano B; Dekker NH
    Methods Mol Biol; 2017; 1624():237-252. PubMed ID: 28842888
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Loading clamps for DNA replication and repair.
    Bloom LB
    DNA Repair (Amst); 2009 May; 8(5):570-8. PubMed ID: 19213612
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chromosomal replication dynamics and interaction with the β sliding clamp determine orientation of bacterial transposable elements.
    Gómez MJ; Díaz-Maldonado H; González-Tortuero E; López de Saro FJ
    Genome Biol Evol; 2014 Mar; 6(3):727-40. PubMed ID: 24614824
    [TBL] [Abstract][Full Text] [Related]  

  • 60. From Processivity to Genome Maintenance: The Many Roles of Sliding Clamps.
    Mulye M; Singh MI; Jain V
    Genes (Basel); 2022 Nov; 13(11):. PubMed ID: 36360296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.