These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 25520600)

  • 1. Temperature-induced reversible self-assembly of diphenylalanine peptide and the structural transition from organogel to crystalline nanowires.
    Huang R; Wang Y; Qi W; Su R; He Z
    Nanoscale Res Lett; 2014; 9(1):653. PubMed ID: 25520600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent-induced structural transition of self-assembled dipeptide: from organogels to microcrystals.
    Zhu P; Yan X; Su Y; Yang Y; Li J
    Chemistry; 2010 Mar; 16(10):3176-83. PubMed ID: 20119986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-Scale Assembly of Peptide-Based Hierarchical Nanostructures and Their Antiferroelectric Properties.
    Lee Y; Kim KW; Duong NX; Park H; Park J; Ahn CW; Park IW; Jang SC; Kim DH; Lee M; Chung WJ; Kim TH; Lee H; Heo K
    Small; 2020 Nov; 16(45):e2003986. PubMed ID: 33078539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disassembly and reassembly of diphenylalanine crystals through evaporation of solvent.
    Xia J; Sun B; Wang C; Sun N; Cao H; Jia Y; Yang Y; Li J
    J Colloid Interface Sci; 2021 Oct; 599():661-666. PubMed ID: 33979748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical, interface-induced self-assembly of diphenylalanine: formation of peptide nanofibers and microvesicles.
    Huang R; Su R; Qi W; Zhao J; He Z
    Nanotechnology; 2011 Jun; 22(24):245609. PubMed ID: 21543826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of pH on the self-assembly of diphenylalanine peptides: molecular insights from coarse-grained simulations.
    Wang Y; Wang K; Zhao X; Xu X; Sun T
    Soft Matter; 2023 Aug; 19(30):5749-5757. PubMed ID: 37462931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System.
    Brown N; Lei J; Zhan C; Shimon LJW; Adler-Abramovich L; Wei G; Gazit E
    ACS Nano; 2018 Apr; 12(4):3253-3262. PubMed ID: 29558116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the self-assembly mechanism of diphenylalanine-based peptide nanovesicles and nanotubes.
    Guo C; Luo Y; Zhou R; Wei G
    ACS Nano; 2012 May; 6(5):3907-18. PubMed ID: 22468743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly pathways and polymorphism in peptide-based nanostructures.
    Dudukovic NA; Hudson BC; Paravastu AK; Zukoski CF
    Nanoscale; 2018 Jan; 10(3):1508-1516. PubMed ID: 29303206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides.
    Guo C; Luo Y; Zhou R; Wei G
    Nanoscale; 2014 Mar; 6(5):2800-11. PubMed ID: 24468750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstructive Phase Transition in Ultrashort Peptide Nanostructures and Induced Visible Photoluminescence.
    Handelman A; Kuritz N; Natan A; Rosenman G
    Langmuir; 2016 Mar; 32(12):2847-62. PubMed ID: 26496411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Co-Solvents on Loading and Release Properties of Self- Assembled Di-Peptide Building Blocks, Towards Drug Delivery Applications.
    Yazdani S; Ghoreishi SM; Habibi N
    Protein Pept Lett; 2022; 29(1):80-88. PubMed ID: 34825860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expanding the solvent chemical space for self-assembly of dipeptide nanostructures.
    Mason TO; Chirgadze DY; Levin A; Adler-Abramovich L; Gazit E; Knowles TP; Buell AK
    ACS Nano; 2014 Feb; 8(2):1243-53. PubMed ID: 24422499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology and Pattern Control of Diphenylalanine Self-Assembly via Evaporative Dewetting.
    Chen J; Qin S; Wu X; Chu AP
    ACS Nano; 2016 Jan; 10(1):832-8. PubMed ID: 26654935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High stability of self-assembled peptide nanowires against thermal, chemical, and proteolytic attacks.
    Ryu J; Park CB
    Biotechnol Bioeng; 2010 Feb; 105(2):221-30. PubMed ID: 19777585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly of cyclo-diphenylalanine peptides in vacuum.
    Jeon J; Shell MS
    J Phys Chem B; 2014 Jun; 118(24):6644-52. PubMed ID: 24877752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-Assembly between Fmoc Diphenylalanine and Diphenylalanine within a 3D Fibrous Viscous Network Confers Atypical Curvature and Branching.
    Chakraborty P; Tang Y; Guterman T; Arnon ZA; Yao Y; Wei G; Gazit E
    Angew Chem Int Ed Engl; 2020 Dec; 59(52):23731-23739. PubMed ID: 32894630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expanding the structural diversity of peptide assemblies by coassembling dipeptides with diphenylalanine.
    Tang Y; Yao Y; Wei G
    Nanoscale; 2020 Feb; 12(5):3038-3049. PubMed ID: 31971529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational dynamics and aggregation behavior of piezoelectric diphenylalanine peptides in an external electric field.
    Kelly CM; Northey T; Ryan K; Brooks BR; Kholkin AL; Rodriguez BJ; Buchete NV
    Biophys Chem; 2015 Jan; 196():16-24. PubMed ID: 25240398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of Peptide-Based Hybrid Nanobelts with Enhanced Color Emission by Heat Treatment or Water Induction.
    Liu X; Zhu P; Fei J; Zhao J; Yan X; Li J
    Chemistry; 2015 Jun; 21(26):9461-7. PubMed ID: 25965918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.