BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25520607)

  • 1. Do you hear where I hear?: isolating the individualized sound localization cues.
    Romigh GD; Simpson BD
    Front Neurosci; 2014; 8():370. PubMed ID: 25520607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Usability of Individualized Head-Related Transfer Functions in Virtual Reality: Empirical Study With Perceptual Attributes in Sagittal Plane Sound Localization.
    Jenny C; Reuter C
    JMIR Serious Games; 2020 Sep; 8(3):e17576. PubMed ID: 32897232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perceptual factors contribute more than acoustical factors to sound localization abilities with virtual sources.
    Andéol G; Savel S; Guillaume A
    Front Neurosci; 2014; 8():451. PubMed ID: 25688182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced auditory spatial performance using individualized head-related transfer functions: An event-related potential study.
    Wisniewski MG; Romigh GD; Kenzig SM; Iyer N; Simpson BD; Thompson ER; Rothwell CD
    J Acoust Soc Am; 2016 Dec; 140(6):EL539. PubMed ID: 28040012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sound localization in noise and sensitivity to spectral shape.
    Andéol G; Macpherson EA; Sabin AT
    Hear Res; 2013 Oct; 304():20-7. PubMed ID: 23769958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of spectral modulation cues in virtual sound localization.
    Qian J; Eddins DA
    J Acoust Soc Am; 2008 Jan; 123(1):302-14. PubMed ID: 18177160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct comparison of the impact of head tracking, reverberation, and individualized head-related transfer functions on the spatial perception of a virtual speech source.
    Begault DR; Wenzel EM; Anderson MR
    J Audio Eng Soc; 2001 Oct; 49(10):904-16. PubMed ID: 11885605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of head-related transfer function measurement methodology on localization performance in spatial audio interfaces.
    MacDonald JA; Tran PK
    Hum Factors; 2008 Apr; 50(2):256-63. PubMed ID: 18516836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling distance-dependent individual head-related transfer functions in the horizontal plane using frontal projection headphones.
    Sunder K; Gan WS; Tan EL
    J Acoust Soc Am; 2015 Jul; 138(1):150-71. PubMed ID: 26233016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sound localization in individualized and non-individualized crosstalk cancellation systems.
    Majdak P; Masiero B; Fels J
    J Acoust Soc Am; 2013 Apr; 133(4):2055-68. PubMed ID: 23556576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity of human subjects to head-related transfer-function phase spectra.
    Kulkarni A; Isabelle SK; Colburn HS
    J Acoust Soc Am; 1999 May; 105(5):2821-40. PubMed ID: 10335633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A low cost, non-individualized surround sound system based upon head related transfer functions: an ergonomics study and prototype development.
    So RH; Leung NM; Braasch J; Leung KL
    Appl Ergon; 2006 Nov; 37(6):695-707. PubMed ID: 16524558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into head-related transfer function: Spatial dimensionality and continuous representation.
    Zhang W; Abhayapala TD; Kennedy RA; Duraiswami R
    J Acoust Soc Am; 2010 Apr; 127(4):2347-57. PubMed ID: 20370017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity analysis of pinna morphology on head-related transfer functions simulated via a parametric pinna model.
    Stitt P; Katz BFG
    J Acoust Soc Am; 2021 Apr; 149(4):2559. PubMed ID: 33940891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards Child-Appropriate Virtual Acoustic Environments: A Database of High-Resolution HRTF Measurements and 3D-Scans of Children.
    Braren HS; Fels J
    Int J Environ Res Public Health; 2021 Dec; 19(1):. PubMed ID: 35010583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-term effects of sound localization training in virtual reality.
    Steadman MA; Kim C; Lestang JH; Goodman DFM; Picinali L
    Sci Rep; 2019 Dec; 9(1):18284. PubMed ID: 31798004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of individualized headphone calibration for the generation of high fidelity virtual auditory space.
    Pralong D
    J Acoust Soc Am; 1996 Dec; 100(6):3785-93. PubMed ID: 8969480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast head-related transfer function measurement via reciprocity.
    Zotkin DN; Duraiswami R; Grassi E; Gumerov NA
    J Acoust Soc Am; 2006 Oct; 120(4):2202-15. PubMed ID: 17069316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral cues for sound localization in cats: a model for discharge rate representations in the auditory nerve.
    May BJ; Huang AY
    J Acoust Soc Am; 1997 May; 101(5 Pt 1):2705-19. PubMed ID: 9165726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generic HRTFs May be Good Enough in Virtual Reality. Improving Source Localization through Cross-Modal Plasticity.
    Berger CC; Gonzalez-Franco M; Tajadura-Jiménez A; Florencio D; Zhang Z
    Front Neurosci; 2018; 12():21. PubMed ID: 29456486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.