BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 25520639)

  • 1. Changes in global and regional modularity associated with increasing working memory load.
    Stanley ML; Dagenbach D; Lyday RG; Burdette JH; Laurienti PJ
    Front Hum Neurosci; 2014; 8():954. PubMed ID: 25520639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition.
    Cohen JR; D'Esposito M
    J Neurosci; 2016 Nov; 36(48):12083-12094. PubMed ID: 27903719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Episodic Memory Retrieval Benefits from a Less Modular Brain Network Organization.
    Westphal AJ; Wang S; Rissman J
    J Neurosci; 2017 Mar; 37(13):3523-3531. PubMed ID: 28242796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional brain network modularity captures inter- and intra-individual variation in working memory capacity.
    Stevens AA; Tappon SC; Garg A; Fair DA
    PLoS One; 2012; 7(1):e30468. PubMed ID: 22276205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Angular default mode network connectivity across working memory load.
    Vatansever D; Manktelow AE; Sahakian BJ; Menon DK; Stamatakis EA
    Hum Brain Mapp; 2017 Jan; 38(1):41-52. PubMed ID: 27489137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical parametric network analysis of functional connectivity dynamics during a working memory task.
    Ginestet CE; Simmons A
    Neuroimage; 2011 Mar; 55(2):688-704. PubMed ID: 21095229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is functional integration of resting state brain networks an unspecific biomarker for working memory performance?
    Alavash M; Doebler P; Holling H; Thiel CM; Gießing C
    Neuroimage; 2015 Mar; 108():182-93. PubMed ID: 25536495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition of the functional brain network related to increasing cognitive demands.
    Finc K; Bonna K; Lewandowska M; Wolak T; Nikadon J; Dreszer J; Duch W; Kühn S
    Hum Brain Mapp; 2017 Jul; 38(7):3659-3674. PubMed ID: 28432773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of goals on modular brain network organization during working memory.
    Gallen CL; Hwang K; Chen AJ; Jacobs EG; Lee TG; D'Esposito M
    Front Behav Neurosci; 2023; 17():1128610. PubMed ID: 37138661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Load matters: neural correlates of verbal working memory in children with autism spectrum disorder.
    Vogan VM; Francis KE; Morgan BR; Smith ML; Taylor MJ
    J Neurodev Disord; 2018 Jun; 10(1):19. PubMed ID: 29859034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modular structure of functional networks in olfactory memory.
    Meunier D; Fonlupt P; Saive AL; Plailly J; Ravel N; Royet JP
    Neuroimage; 2014 Jul; 95():264-75. PubMed ID: 24662576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topologically Reorganized Connectivity Architecture of Default-Mode, Executive-Control, and Salience Networks across Working Memory Task Loads.
    Liang X; Zou Q; He Y; Yang Y
    Cereb Cortex; 2016 Apr; 26(4):1501-1511. PubMed ID: 25596593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-dependent changes in task-based modular organization of the human brain.
    Schlesinger KJ; Turner BO; Lopez BA; Miller MB; Carlson JM
    Neuroimage; 2017 Feb; 146():741-762. PubMed ID: 27596025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Working memory performance of early MS patients correlates inversely with modularity increases in resting state functional connectivity networks.
    Gamboa OL; Tagliazucchi E; von Wegner F; Jurcoane A; Wahl M; Laufs H; Ziemann U
    Neuroimage; 2014 Jul; 94():385-395. PubMed ID: 24361662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graph-Theoretical Study of Functional Changes Associated with the Iowa Gambling Task.
    Bolt T; Laurienti PJ; Lyday R; Morgan A; Dagenbach D
    Front Hum Neurosci; 2016; 10():314. PubMed ID: 27445754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia.
    Alexander-Bloch AF; Gogtay N; Meunier D; Birn R; Clasen L; Lalonde F; Lenroot R; Giedd J; Bullmore ET
    Front Syst Neurosci; 2010; 4():147. PubMed ID: 21031030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Errors on interrupter tasks presented during spatial and verbal working memory performance are linearly linked to large-scale functional network connectivity in high temporal resolution resting state fMRI.
    Magnuson ME; Thompson GJ; Schwarb H; Pan WJ; McKinley A; Schumacher EH; Keilholz SD
    Brain Imaging Behav; 2015 Dec; 9(4):854-67. PubMed ID: 25563228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain Network Modularity During a Sustained Working-Memory Task.
    Moraschi M; Mascali D; Tommasin S; Gili T; Hassan IE; Fratini M; DiNuzzo M; Wise RG; Mangia S; Macaluso E; Giove F
    Front Physiol; 2020; 11():422. PubMed ID: 32457647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Test-retest reliability of fMRI-based graph theoretical properties during working memory, emotion processing, and resting state.
    Cao H; Plichta MM; Schäfer A; Haddad L; Grimm O; Schneider M; Esslinger C; Kirsch P; Meyer-Lindenberg A; Tost H
    Neuroimage; 2014 Jan; 84():888-900. PubMed ID: 24055506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain working memory network indices as landmarks of intelligence.
    Khodaei M; Laurienti PJ; Dagenbach D; Simpson SL
    Neuroimage Rep; 2023 Jun; 3(2):. PubMed ID: 37425210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.