BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 25521283)

  • 1. Spatially gradated hydrogel platform as a 3D engineered tumor microenvironment.
    Pedron S; Becka E; Harley BA
    Adv Mater; 2015 Mar; 27(9):1567-72. PubMed ID: 25521283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crosstalk between microglia and patient-derived glioblastoma cells inhibit invasion in a three-dimensional gelatin hydrogel model.
    Chen JE; Lumibao J; Leary S; Sarkaria JN; Steelman AJ; Gaskins HR; Harley BAC
    J Neuroinflammation; 2020 Nov; 17(1):346. PubMed ID: 33208156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multidimensional hydrogel models reveal endothelial network angiocrine signals increase glioblastoma cell number, invasion, and temozolomide resistance.
    Ngo MT; Karvelis E; Harley BAC
    Integr Biol (Camb); 2020 Jun; 12(6):139-149. PubMed ID: 32507878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gelatin Methacryloyl Hydrogels in the Absence of a Crosslinker as 3D Glioblastoma Multiforme (GBM)-Mimetic Microenvironment.
    Erkoc P; Seker F; Bagci-Onder T; Kizilel S
    Macromol Biosci; 2018 Mar; 18(3):. PubMed ID: 29333657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of the biophysical features of a 3D gelatin microenvironment on glioblastoma malignancy.
    Pedron S; Harley BA
    J Biomed Mater Res A; 2013 Dec; 101(12):3404-15. PubMed ID: 23559545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels.
    Wang C; Tong X; Yang F
    Mol Pharm; 2014 Jul; 11(7):2115-25. PubMed ID: 24712441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element.
    Golden AP; Tien J
    Lab Chip; 2007 Jun; 7(6):720-5. PubMed ID: 17538713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic generation of gradient hydrogels to modulate hematopoietic stem cell culture environment.
    Mahadik BP; Wheeler TD; Skertich LJ; Kenis PJ; Harley BA
    Adv Healthc Mater; 2014 Mar; 3(3):449-58. PubMed ID: 23997020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gelatin methacrylate hydrogels culture model for glioblastoma cells enriches for mesenchymal-like state and models interactions with immune cells.
    Shah N; Hallur PM; Ganesh RA; Sonpatki P; Naik D; Chandrachari KP; Puchalski RB; Chaubey A
    Sci Rep; 2021 Sep; 11(1):17727. PubMed ID: 34489494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic brain tumor niche regulates glioblastoma cells towards a cancer stem cell phenotype.
    Liu YC; Lee IC; Chen PY
    J Neurooncol; 2018 May; 137(3):511-522. PubMed ID: 29357090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioengineered Scaffolds for 3D Analysis of Glioblastoma Proliferation and Invasion.
    Heffernan JM; Overstreet DJ; Le LD; Vernon BL; Sirianni RW
    Ann Biomed Eng; 2015 Aug; 43(8):1965-77. PubMed ID: 25515315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perivascular signals alter global gene expression profile of glioblastoma and response to temozolomide in a gelatin hydrogel.
    Ngo MT; Harley BAC
    Biomaterials; 2019 Apr; 198():122-134. PubMed ID: 29941152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogels to model 3D in vitro microenvironment of tumor vascularization.
    Song HH; Park KM; Gerecht S
    Adv Drug Deliv Rev; 2014 Dec; 79-80():19-29. PubMed ID: 24969477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of glioma cell phenotype in 3D matrices by hyaluronic acid.
    Pedron S; Becka E; Harley BA
    Biomaterials; 2013 Oct; 34(30):7408-17. PubMed ID: 23827186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application.
    Jiang L; Wang Y; Liu Z; Ma C; Yan H; Xu N; Gang F; Wang X; Zhao L; Sun X
    Tissue Eng Part B Rev; 2019 Oct; 25(5):398-411. PubMed ID: 31115274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D microfluidic tumor models for biomimetic engineering of glioma niche and detection of cell morphology, migration and phenotype change.
    Lin L; He Z; Jie M; Lin JM; Zhang J
    Talanta; 2021 Nov; 234():122702. PubMed ID: 34364499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of microfluidic chip with biomimetic hydrogel for 3D controlling and monitoring of cell alignment and migration.
    Lee KH; Lee KH; Lee J; Choi H; Lee D; Park Y; Lee SH
    J Biomed Mater Res A; 2014 Apr; 102(4):1164-72. PubMed ID: 23630058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Open-Top Patterned Hydrogel-Laden 3D Glioma Cell Cultures for Creation of Dynamic Chemotactic Gradients to Direct Cell Migration.
    Rane A; Tate S; Sumey JL; Zhong Q; Zong H; Purow B; Caliari SR; Swami NS
    ACS Biomater Sci Eng; 2024 May; 10(5):3470-3477. PubMed ID: 38652035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering.
    Chung BG; Lee KH; Khademhosseini A; Lee SH
    Lab Chip; 2012 Jan; 12(1):45-59. PubMed ID: 22105780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic assay of endothelial cell migration in 3D interpenetrating polymer semi-network HA-Collagen hydrogel.
    Jeong GS; Kwon GH; Kang AR; Jung BY; Park Y; Chung S; Lee SH
    Biomed Microdevices; 2011 Aug; 13(4):717-23. PubMed ID: 21494794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.