These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 25521329)

  • 21. Domain boundary prediction based on profile domain linker propensity index.
    Dong Q; Wang X; Lin L; Xu Z
    Comput Biol Chem; 2006 Apr; 30(2):127-33. PubMed ID: 16531120
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of protein structural class for the twilight zone sequences.
    Kurgan L; Chen K
    Biochem Biophys Res Commun; 2007 Jun; 357(2):453-60. PubMed ID: 17433260
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proteins associated with diseases show enhanced sequence correlation between charged residues.
    Dima RI; Thirumalai D
    Bioinformatics; 2004 Oct; 20(15):2345-54. PubMed ID: 15073020
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characteristics and prediction of domain linker sequences in multi-domain proteins.
    Tanaka T; Kuroda Y; Yokoyama S
    J Struct Funct Genomics; 2003; 4(2-3):79-85. PubMed ID: 14649291
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PDP-CON: prediction of domain/linker residues in protein sequences using a consensus approach.
    Chatterjee P; Basu S; Zubek J; Kundu M; Nasipuri M; Plewczynski D
    J Mol Model; 2016 Apr; 22(4):72. PubMed ID: 26969678
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DOMAC: an accurate, hybrid protein domain prediction server.
    Cheng J
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W354-6. PubMed ID: 17553833
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Prediction of G-protein-coupled receptor classes with pseudo amino acid composition].
    Gu Q; Ding Y; Zhang T; Shen Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Jun; 27(3):500-4. PubMed ID: 20649006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Sequence-Based Dynamic Ensemble Learning System for Protein Ligand-Binding Site Prediction.
    Chen P; Hu S; Zhang J; Gao X; Li J; Xia J; Wang B
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(5):901-912. PubMed ID: 26661785
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improvement of domain linker prediction by incorporating loop-length-dependent characteristics.
    Tanaka T; Yokoyama S; Kuroda Y
    Biopolymers; 2006; 84(2):161-8. PubMed ID: 16134173
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A discriminative approach for identifying domain-domain interactions from protein-protein interactions.
    Zhao XM; Chen L; Aihara K
    Proteins; 2010 Apr; 78(5):1243-53. PubMed ID: 20027642
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting disordered regions in proteins using the profiles of amino acid indices.
    Han P; Zhang X; Feng ZP
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S42. PubMed ID: 19208144
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PRBP: Prediction of RNA-Binding Proteins Using a Random Forest Algorithm Combined with an RNA-Binding Residue Predictor.
    Ma X; Guo J; Xiao K; Sun X
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(6):1385-93. PubMed ID: 26671809
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inferring boundary information of discontinuous-domain proteins.
    Sikder AR; Zomaya AY
    IEEE Trans Nanobioscience; 2008 Sep; 7(3):200-5. PubMed ID: 18779100
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Better prediction of protein contact number using a support vector regression analysis of amino acid sequence.
    Yuan Z
    BMC Bioinformatics; 2005 Oct; 6():248. PubMed ID: 16221309
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Cascade Random Forests Algorithm for Predicting Protein-Protein Interaction Sites.
    Wei ZS; Yang JY; Shen HB; Yu DJ
    IEEE Trans Nanobioscience; 2015 Oct; 14(7):746-60. PubMed ID: 26441427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An improved profile-level domain linker propensity index for protein domain boundary prediction.
    Zhang Y; Liu B; Dong Q; Jin VX
    Protein Pept Lett; 2011 Jan; 18(1):7-16. PubMed ID: 20955175
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identifying foldable regions in protein sequence from the hydrophobic signal.
    Pang CN; Lin K; Wouters MA; Heringa J; George RA
    Nucleic Acids Res; 2008 Feb; 36(2):578-88. PubMed ID: 18056079
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences.
    Cai B; Jiang X
    BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Classifying noisy protein sequence data: a case study of immunoglobulin light chains.
    Yu C; Zavaljevski N; Stevens FJ; Yackovich K; Reifman J
    Bioinformatics; 2005 Jun; 21 Suppl 1():i495-501. PubMed ID: 15961496
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of protein structure alignments to iterated hidden Markov model protocols for structure prediction.
    Scheeff ED; Bourne PE
    BMC Bioinformatics; 2006 Sep; 7():410. PubMed ID: 16970830
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.