These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 25521390)

  • 1. Strained Conformations of Nucleosides in Active Sites of Nucleoside Phosphorylases.
    Il'icheva IA; Polyakov KM; Mikhailov SN
    Biomolecules; 2020 Apr; 10(4):. PubMed ID: 32260512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleoside Phosphorylases make N7-xanthosine.
    Westarp S; Brandt F; Neumair L; Betz C; Dagane A; Kemper S; Jacob CR; Neubauer P; Kurreck A; Kaspar F
    Nat Commun; 2024 Apr; 15(1):3625. PubMed ID: 38684649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tricyclic Nucleobase Analogs and Their Ribosides as Substrates and Inhibitors of Purine-Nucleoside Phosphorylases III. Aminopurine Derivatives.
    Stachelska-Wierzchowska A; Wierzchowski J; Górka M; Bzowska A; Stolarski R; Wielgus-Kutrowska B
    Molecules; 2020 Feb; 25(3):. PubMed ID: 32033464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate spectra of nucleoside phosphorylases and their potential in the production of pharmaceutically active compounds.
    Yehia H; Kamel S; Paulick K; Wagner A; Neubauer P
    Curr Pharm Des; 2017 Oct; ():. PubMed ID: 29076414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lactobacillus reuteri 2'-deoxyribosyltransferase, a novel biocatalyst for tailoring of nucleosides.
    Fernández-Lucas J; Acebal C; Sinisterra JV; Arroyo M; de la Mata I
    Appl Environ Microbiol; 2010 Mar; 76(5):1462-70. PubMed ID: 20048065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthetic origin and mechanism of formation of the aminoribosyl moiety of peptidyl nucleoside antibiotics.
    Chi X; Pahari P; Nonaka K; Van Lanen SG
    J Am Chem Soc; 2011 Sep; 133(36):14452-9. PubMed ID: 21819104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. General Principles for Yield Optimization of Nucleoside Phosphorylase-Catalyzed Transglycosylations.
    Kaspar F; Giessmann RT; Hellendahl KF; Neubauer P; Wagner A; Gimpel M
    Chembiochem; 2020 May; 21(10):1428-1432. PubMed ID: 31820837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic synthesis and phosphorolysis of 4(2)-thioxo- and 6(5)-azapyrimidine nucleosides by
    Stepchenko VA; Miroshnikov AI; Seela F; Mikhailopulo IA
    Beilstein J Org Chem; 2016; 12():2588-2601. PubMed ID: 28144328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic Transglycosylation Features in Synthesis of 8-Aza-7-Deazapurine Fleximer Nucleosides by Recombinant
    Eletskaya BZ; Mironov AF; Fateev IV; Berzina MY; Antonov KV; Smirnova OS; Zatsepina AB; Arnautova AO; Abramchik YA; Paramonov AS; Kayushin AL; Khandazhinskaya AL; Matyugina ES; Kochetkov SN; Miroshnikov AI; Mikhailopulo IA; Esipov RS; Konstantinova ID
    Biomolecules; 2024 Jul; 14(7):. PubMed ID: 39062512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Snapshots of the Reaction Coordinate of a Thermophilic 2'-Deoxyribonucleoside/ribonucleoside Transferase.
    Tang P; Harding CJ; Dickson AL; da Silva RG; Harrison DJ; Czekster CM
    ACS Catal; 2024 Mar; 14(5):3090-3102. PubMed ID: 38449528
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Acosta J; Del Arco J; Pisabarro V; Gago F; Fernández-Lucas J
    Front Bioeng Biotechnol; 2020; 8():593. PubMed ID: 32612982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Expedient Synthesis of Flexible Nucleosides through Enzymatic Glycosylation of Proximal and Distal Fleximer Bases.
    Vichier-Guerre S; Ku TC; Pochet S; Seley-Radtke KL
    Chembiochem; 2020 May; 21(10):1412-1417. PubMed ID: 31899839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tri-Cyclic Nucleobase Analogs and their Ribosides as Substrates of Purine-Nucleoside Phosphorylases. II Guanine and Isoguanine Derivatives.
    Stachelska-Wierzchowska A; Wierzchowski J; Górka M; Bzowska A; Wielgus-Kutrowska B
    Molecules; 2019 Apr; 24(8):. PubMed ID: 30995785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-Selective Ribosylation of Fluorescent Nucleobase Analogs Using Purine-Nucleoside Phosphorylase as a Catalyst: Effects of Point Mutations.
    Stachelska-Wierzchowska A; Wierzchowski J; Bzowska A; Wielgus-Kutrowska B
    Molecules; 2015 Dec; 21(1):E44. PubMed ID: 26729076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethenoguanines undergo glycosylation by nucleoside 2'-deoxyribosyltransferases at non-natural sites.
    Ye W; Paul D; Gao L; Seckute J; Sangaiah R; Jayaraj K; Zhang Z; Kaminski PA; Ealick SE; Gold A; Ball LM
    PLoS One; 2014; 9(12):e115082. PubMed ID: 25521390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structures of purine 2'-deoxyribosyltransferase, substrate complexes, and the ribosylated enzyme intermediate at 2.0 A resolution.
    Anand R; Kaminski PA; Ealick SE
    Biochemistry; 2004 Mar; 43(9):2384-93. PubMed ID: 14992575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Addition of deoxyribose to guanine and modified DNA based by Lactobacillus helveticus trans-N-deoxyribosylase.
    Müller M; Hutchinson LK; Guengerich FP
    Chem Res Toxicol; 1996; 9(7):1140-4. PubMed ID: 8902269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleoside deoxyribosyltransferase-II from Lactobacillus helveticus Substrate specificity studied. Pyrimidine bases as acceptors.
    Cardinaud R; Holguin J
    Biochim Biophys Acta; 1979 Jun; 568(2):339-47. PubMed ID: 486487
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.