These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 25521602)

  • 1. DNA adsorption by indium tin oxide nanoparticles.
    Liu B; Liu J
    Langmuir; 2015; 31(1):371-7. PubMed ID: 25521602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of a Phage-Display Method to Identify Peptides that Bind to a Tin Oxide Nanosheets.
    Nakazawa H; Seta Y; Hirose T; Masuda Y; Umetsu M
    Protein Pept Lett; 2018; 25(1):68-75. PubMed ID: 29210630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of DNA oligonucleotides by titanium dioxide nanoparticles.
    Zhang X; Wang F; Liu B; Kelly EY; Servos MR; Liu J
    Langmuir; 2014 Jan; 30(3):839-45. PubMed ID: 24387035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region.
    Kanehara M; Koike H; Yoshinaga T; Teranishi T
    J Am Chem Soc; 2009 Dec; 131(49):17736-7. PubMed ID: 19921844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive Screen of Metal Oxide Nanoparticles for DNA Adsorption, Fluorescence Quenching, and Anion Discrimination.
    Liu B; Liu J
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24833-8. PubMed ID: 26491955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning DNA adsorption affinity and density on metal oxide and phosphate for improved arsenate detection.
    Lopez A; Zhang Y; Liu J
    J Colloid Interface Sci; 2017 May; 493():249-256. PubMed ID: 28110059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core-shell tin oxide, indium oxide, and indium tin oxide nanoparticles on silicon with tunable dispersion: electrochemical and structural characteristics as a hybrid Li-ion battery anode.
    Osiak MJ; Armstrong E; Kennedy T; Torres CM; Ryan KM; O'Dwyer C
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8195-202. PubMed ID: 23952971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and optical properties of indium tin oxide/epoxy nanocomposites with polyglycidyl methacrylate grafted nanoparticles.
    Tao P; Viswanath A; Schadler LS; Benicewicz BC; Siegel RW
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3638-45. PubMed ID: 21823657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of surface charge and electrode material on the size-dependent oxidation of surface-attached metal nanoparticles.
    Masitas RA; Khachian IV; Bill BL; Zamborini FP
    Langmuir; 2014 Nov; 30(43):13075-84. PubMed ID: 25260111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The utilization of SiNWs/AuNPs-modified indium tin oxide (ITO) in fabrication of electrochemical DNA sensor.
    Rashid JI; Yusof NA; Abdullah J; Hashim U; Hajian R
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():270-6. PubMed ID: 25491829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular accumulation of indium ions released from nanoparticles induces oxidative stress, proinflammatory response and DNA damage.
    Tabei Y; Sonoda A; Nakajima Y; Biju V; Makita Y; Yoshida Y; Horie M
    J Biochem; 2016 Feb; 159(2):225-37. PubMed ID: 26378248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient chemisorption of organophosphorous redox probes on indium tin oxide surfaces under mild conditions.
    Forget A; Limoges B; Balland V
    Langmuir; 2015 Feb; 31(6):1931-40. PubMed ID: 25611977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-molecule fluorescence imaging of DNA at a potential-controlled interface.
    Peterson EM; Harris JM
    Langmuir; 2013 Jul; 29(26):8292-301. PubMed ID: 23741971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroelectrochemical characterization of small hemoproteins adsorbed within nanostructured mesoporous ITO electrodes.
    Schaming D; Renault C; Tucker RT; Lau-Truong S; Aubard J; Brett MJ; Balland V; Limoges B
    Langmuir; 2012 Oct; 28(39):14065-72. PubMed ID: 22957653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of T4 bacteriophages on planar indium tin oxide surface via controlled surface tailoring.
    Liana AE; Chia EW; Marquis CP; Gunawan C; Gooding JJ; Amal R
    J Colloid Interface Sci; 2016 Apr; 468():192-199. PubMed ID: 26851452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA-length-dependent quenching of fluorescently labeled iron oxide nanoparticles with gold, graphene oxide and MoS2 nanostructures.
    Balcioglu M; Rana M; Robertson N; Yigit MV
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12100-10. PubMed ID: 25014711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive oxygen species independent genotoxicity of indium tin oxide nanoparticles triggered by intracellular degradation.
    Tabei Y; Sugino S; Nakajima Y; Horie M
    Food Chem Toxicol; 2018 Aug; 118():264-271. PubMed ID: 29772267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct electrodeposition of gold nanoparticles on indium tin oxide surface and its application.
    Ma Y; Di J; Yan X; Zhao M; Lu Z; Tu Y
    Biosens Bioelectron; 2009 Jan; 24(5):1480-3. PubMed ID: 19038539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ZnS nanoparticles electrodeposited onto ITO electrode as a platform for fabrication of enzyme-based biosensors of glucose.
    Du J; Yu X; Wu Y; Di J
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2031-6. PubMed ID: 23498229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silver-nanoparticle-attached indium tin oxide surfaces fabricated by a seed-mediated growth approach.
    Chang G; Zhang J; Oyama M; Hirao K
    J Phys Chem B; 2005 Jan; 109(3):1204-9. PubMed ID: 16851082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.