These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 25521849)

  • 1. Characterization of M. tuberculosis SerB2, an essential HAD-family phosphatase, reveals novel properties.
    Yadav GP; Shree S; Maurya R; Rai N; Singh DK; Srivastava KK; Ramachandran R
    PLoS One; 2014; 9(12):e115409. PubMed ID: 25521849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High throughput screen identifies small molecule inhibitors specific for Mycobacterium tuberculosis phosphoserine phosphatase.
    Arora G; Tiwari P; Mandal RS; Gupta A; Sharma D; Saha S; Singh R
    J Biol Chem; 2014 Sep; 289(36):25149-65. PubMed ID: 25037224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulatory Mechanism of Mycobacterium tuberculosis Phosphoserine Phosphatase SerB2.
    Grant GA
    Biochemistry; 2017 Dec; 56(49):6481-6490. PubMed ID: 29140686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The M. tuberculosis HAD phosphatase (Rv3042c) interacts with host proteins and is inhibited by Clofazimine.
    Shree S; Singh AK; Saxena R; Kumar H; Agarwal A; Sharma VK; Srivastava K; Srivastava KK; Sanyal S; Ramachandran R
    Cell Mol Life Sci; 2016 Sep; 73(17):3401-17. PubMed ID: 26984196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical characterization of phosphoserine phosphatase SerB2 from Mycobacterium marinum.
    Pierson E; Wouters J
    Biochem Biophys Res Commun; 2020 Oct; 530(4):739-744. PubMed ID: 32782143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical characterization and ligand-binding properties of trehalose-6-phosphate phosphatase from Mycobacterium tuberculosis.
    Shi L; Zhang H; Qiu Y; Wang Q; Wu X; Wang H; Zhang X; Lin D
    Acta Biochim Biophys Sin (Shanghai); 2013 Oct; 45(10):837-44. PubMed ID: 23903290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and Repurposing of Trisubstituted Harmine Derivatives as Novel Inhibitors of
    Pierson E; Haufroid M; Gosain TP; Chopra P; Singh R; Wouters J
    Molecules; 2020 Jan; 25(2):. PubMed ID: 31963843
    [No Abstract]   [Full Text] [Related]  

  • 8. Identification of a novel ligand binding site in phosphoserine phosphatase from the hyperthermophilic archaeon Thermococcus onnurineus.
    Jung TY; Kim YS; Oh BH; Woo E
    Proteins; 2013 May; 81(5):819-29. PubMed ID: 23239422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting the phosphoserine phosphatase MtSerB2 for tuberculosis drug discovery, an hybrid knowledge based /fragment based approach.
    Haufroid M; Volkov AN; Wouters J
    Eur J Med Chem; 2023 Jan; 245(Pt 1):114935. PubMed ID: 36403421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual Screening with Docking Simulations and Biochemical Evaluation of VHY Phosphatase Inhibitors.
    Park H; Lee HS; Kim SJ
    Chem Pharm Bull (Tokyo); 2015; 63(10):807-11. PubMed ID: 26423037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery and analysis of a novel type of the serine biosynthetic enzyme phosphoserine phosphatase in Thermus thermophilus.
    Chiba Y; Yoshida A; Shimamura S; Kameya M; Tomita T; Nishiyama M; Takai K
    FEBS J; 2019 Feb; 286(4):726-736. PubMed ID: 30430741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery and analysis of cofactor-dependent phosphoglycerate mutase homologs as novel phosphoserine phosphatases in Hydrogenobacter thermophilus.
    Chiba Y; Oshima K; Arai H; Ishii M; Igarashi Y
    J Biol Chem; 2012 Apr; 287(15):11934-41. PubMed ID: 22337887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis for the local conformational rearrangement of human phosphoserine phosphatase.
    Kim HY; Heo YS; Kim JH; Park MH; Moon J; Kim E; Kwon D; Yoon J; Shin D; Jeong EJ; Park SY; Lee TG; Jeon YH; Ro S; Cho JM; Hwang KY
    J Biol Chem; 2002 Nov; 277(48):46651-8. PubMed ID: 12213811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations responsible for 3-phosphoserine phosphatase deficiency.
    Veiga-da-Cunha M; Collet JF; Prieur B; Jaeken J; Peeraer Y; Rabbijns A; Van Schaftingen E
    Eur J Hum Genet; 2004 Feb; 12(2):163-6. PubMed ID: 14673469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel phosphoserine phosphatase inhibitors.
    Hawkinson JE; Acosta-Burruel M; Ta ND; Wood PL
    Eur J Pharmacol; 1997 Oct; 337(2-3):315-24. PubMed ID: 9430431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of Fe(III)-Zn(II) purple acid phosphatase based on crystal structures.
    Klabunde T; Sträter N; Fröhlich R; Witzel H; Krebs B
    J Mol Biol; 1996 Jun; 259(4):737-48. PubMed ID: 8683579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fragment-based substrate activity screening method for the identification of potent inhibitors of the Mycobacterium tuberculosis phosphatase PtpB.
    Soellner MB; Rawls KA; Grundner C; Alber T; Ellman JA
    J Am Chem Soc; 2007 Aug; 129(31):9613-5. PubMed ID: 17636914
    [No Abstract]   [Full Text] [Related]  

  • 18. Mycobacterium tuberculosis-secreted phosphatases: from pathogenesis to targets for TB drug development.
    Wong D; Chao JD; Av-Gay Y
    Trends Microbiol; 2013 Feb; 21(2):100-9. PubMed ID: 23084287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural characterization of the reaction pathway in phosphoserine phosphatase: crystallographic "snapshots" of intermediate states.
    Wang W; Cho HS; Kim R; Jancarik J; Yokota H; Nguyen HH; Grigoriev IV; Wemmer DE; Kim SH
    J Mol Biol; 2002 May; 319(2):421-31. PubMed ID: 12051918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional analysis of TPM domain containing Rv2345 of Mycobacterium tuberculosis identifies its phosphatase activity.
    Sinha A; Eniyan K; Sinha S; Lynn AM; Bajpai U
    Protein Expr Purif; 2015 Jul; 111():23-7. PubMed ID: 25782739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.