BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 25521855)

  • 1. Revealing editing and SNPs of microRNAs in colon tissues by analyzing high-throughput sequencing profiles of small RNAs.
    Zheng Y; Li T; Ren R; Shi D; Wang S
    BMC Genomics; 2014; 15 Suppl 9(Suppl 9):S11. PubMed ID: 25521855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate detection for a wide range of mutation and editing sites of microRNAs from small RNA high-throughput sequencing profiles.
    Zheng Y; Ji B; Song R; Wang S; Li T; Zhang X; Chen K; Li T; Li J
    Nucleic Acids Res; 2016 Aug; 44(14):e123. PubMed ID: 27229138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying microRNAs and Their Editing Sites in
    Wang Q; Zhao Z; Zhang X; Lu C; Ren S; Li S; Guo J; Liao P; Jiang B; Zheng Y
    Cells; 2019 Jul; 8(7):. PubMed ID: 31284505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying RNA editing sites in miRNAs by deep sequencing.
    Alon S; Eisenberg E
    Methods Mol Biol; 2013; 1038():159-70. PubMed ID: 23872974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive analysis of human small RNA sequencing data provides insights into expression profiles and miRNA editing.
    Gong J; Wu Y; Zhang X; Liao Y; Sibanda VL; Liu W; Guo AY
    RNA Biol; 2014; 11(11):1375-85. PubMed ID: 25692236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using deep sequencing data for identification of editing sites in mature miRNAs.
    Alon S; Eisenberg E
    Methods Mol Biol; 2015; 1269():231-42. PubMed ID: 25577382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong conservation of inbred mouse strain microRNA loci but broad variation in brain microRNAs due to RNA editing and isomiR expression.
    Trontti K; Väänänen J; Sipilä T; Greco D; Hovatta I
    RNA; 2018 May; 24(5):643-655. PubMed ID: 29445025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effect of RNA Editing and ADARs on miRNA Biogenesis and Function.
    Heale BS; Keegan LP; O'Connell MA
    Adv Exp Med Biol; 2011; 700():76-84. PubMed ID: 21755475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of tRNA‑derived fragments in colon cancer by comprehensive small RNA sequencing.
    Xiong W; Wang X; Cai X; Xiong W; Liu Y; Li C; Liu Q; Qin J; Li Y
    Oncol Rep; 2019 Aug; 42(2):735-744. PubMed ID: 31173257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis.
    Hao DC; Yang L; Xiao PG; Liu M
    Physiol Plant; 2012 Dec; 146(4):388-403. PubMed ID: 22708792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress.
    Xie F; Stewart CN; Taki FA; He Q; Liu H; Zhang B
    Plant Biotechnol J; 2014 Apr; 12(3):354-66. PubMed ID: 24283289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide identification and expression analysis of microRNA involved in small cell lung cancer via deep sequencing.
    Yan C; Shi X; Wang Q; Wang Y; Liu Y; Zhang X; Yang Y; Lv F; Shao Y
    Mol Med Rep; 2014 Nov; 10(5):2633-42. PubMed ID: 25190105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Next-generation sequencing identifies novel microRNAs in peripheral blood of lung cancer patients.
    Keller A; Backes C; Leidinger P; Kefer N; Boisguerin V; Barbacioru C; Vogel B; Matzas M; Huwer H; Katus HA; Stähler C; Meder B; Meese E
    Mol Biosyst; 2011 Dec; 7(12):3187-99. PubMed ID: 22027949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNA editing patterns in Huntington's disease.
    Guo S; Yang J; Jiang B; Zhou N; Ding H; Zhou G; Wu S; Suo A; Wu X; Xie W; Li W; Liu Y; Deng W; Zheng Y
    Sci Rep; 2022 Feb; 12(1):3173. PubMed ID: 35210471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep sequencing of grapevine flower and berry short RNA library for discovery of novel microRNAs and validation of precise sequences of grapevine microRNAs deposited in miRBase.
    Wang C; Wang X; Kibet NK; Song C; Zhang C; Li X; Han J; Fang J
    Physiol Plant; 2011 Sep; 143(1):64-81. PubMed ID: 21496033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of conserved and novel microRNAs in Catharanthus roseus by deep sequencing and computational prediction of their potential targets.
    Prakash P; Ghosliya D; Gupta V
    Gene; 2015 Jan; 554(2):181-95. PubMed ID: 25445288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of dysregulated microRNAs in lymphocytes from children with Down syndrome.
    Xu Y; Li W; Liu X; Chen H; Tan K; Chen Y; Tu Z; Dai Y
    Gene; 2013 Nov; 530(2):278-86. PubMed ID: 23933415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep sequencing discovery of novel and conserved microRNAs in strawberry (Fragaria×ananassa).
    Ge A; Shangguan L; Zhang X; Dong Q; Han J; Liu H; Wang X; Fang J
    Physiol Plant; 2013 Jul; 148(3):387-96. PubMed ID: 23061771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of fruit related microRNAs in cucumber (Cucumis sativus L.) using high-throughput sequencing technology.
    Ye X; Song T; Liu C; Feng H; Liu Z
    Hereditas; 2014 Dec; 151(6):220-8. PubMed ID: 25588308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grafting-responsive miRNAs in cucumber and pumpkin seedlings identified by high-throughput sequencing at whole genome level.
    Li C; Li Y; Bai L; Zhang T; He C; Yan Y; Yu X
    Physiol Plant; 2014 Aug; 151(4):406-22. PubMed ID: 24279842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.