These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 25521947)

  • 1. Supervised prediction of drug-induced nephrotoxicity based on interleukin-6 and -8 expression levels.
    Su R; Li Y; Zink D; Loo LH
    BMC Bioinformatics; 2014; 15 Suppl 16(Suppl 16):S16. PubMed ID: 25521947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of nephrotoxic compounds with embryonic stem-cell-derived human renal proximal tubular-like cells.
    Li Y; Kandasamy K; Chuah JK; Lam YN; Toh WS; Oo ZY; Zink D
    Mol Pharm; 2014 Jul; 11(7):1982-90. PubMed ID: 24495215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison and validation of injury risk classifiers for advanced automated crash notification systems.
    Kusano K; Gabler HC
    Traffic Inj Prev; 2014; 15 Suppl 1():S126-33. PubMed ID: 25307377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of supervised machine learning algorithms for classification and prediction of type-2 diabetes disease status in Afar regional state, Northeastern Ethiopia 2021.
    Ebrahim OA; Derbew G
    Sci Rep; 2023 May; 13(1):7779. PubMed ID: 37179444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of heart disease and classifiers' sensitivity analysis.
    Almustafa KM
    BMC Bioinformatics; 2020 Jul; 21(1):278. PubMed ID: 32615980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can-Evo-Ens: Classifier stacking based evolutionary ensemble system for prediction of human breast cancer using amino acid sequences.
    Ali S; Majid A
    J Biomed Inform; 2015 Apr; 54():256-69. PubMed ID: 25617669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning for improved pathological staging of prostate cancer: a performance comparison on a range of classifiers.
    Regnier-Coudert O; McCall J; Lothian R; Lam T; McClinton S; N'dow J
    Artif Intell Med; 2012 May; 55(1):25-35. PubMed ID: 22206941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of drug-induced nephrotoxicity and injury mechanisms with human induced pluripotent stem cell-derived cells and machine learning methods.
    Kandasamy K; Chuah JK; Su R; Huang P; Eng KG; Xiong S; Li Y; Chia CS; Loo LH; Zink D
    Sci Rep; 2015 Jul; 5():12337. PubMed ID: 26212763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning prediction of nanoparticle in vitro toxicity: A comparative study of classifiers and ensemble-classifiers using the Copeland Index.
    Furxhi I; Murphy F; Mullins M; Poland CA
    Toxicol Lett; 2019 Sep; 312():157-166. PubMed ID: 31102714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening nonrandomized studies for medical systematic reviews: a comparative study of classifiers.
    Bekhuis T; Demner-Fushman D
    Artif Intell Med; 2012 Jul; 55(3):197-207. PubMed ID: 22677493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico prediction of drug-induced developmental toxicity by using machine learning approaches.
    Zhang H; Mao J; Qi HZ; Ding L
    Mol Divers; 2020 Nov; 24(4):1281-1290. PubMed ID: 31486961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ADMET Evaluation in Drug Discovery. Part 17: Development of Quantitative and Qualitative Prediction Models for Chemical-Induced Respiratory Toxicity.
    Lei T; Chen F; Liu H; Sun H; Kang Y; Li D; Li Y; Hou T
    Mol Pharm; 2017 Jul; 14(7):2407-2421. PubMed ID: 28595388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diabetes disease detection and classification on Indian demographic and health survey data using machine learning methods.
    Thotad PN; Bharamagoudar GR; Anami BS
    Diabetes Metab Syndr; 2023 Jan; 17(1):102690. PubMed ID: 36527769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug transporter expression profiling in a three-dimensional kidney proximal tubule in vitro nephrotoxicity model.
    Diekjürgen D; Grainger DW
    Pflugers Arch; 2018 Sep; 470(9):1311-1323. PubMed ID: 29744639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning models in breast cancer survival prediction.
    Montazeri M; Montazeri M; Montazeri M; Beigzadeh A
    Technol Health Care; 2016; 24(1):31-42. PubMed ID: 26409558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput imaging-based nephrotoxicity prediction for xenobiotics with diverse chemical structures.
    Su R; Xiong S; Zink D; Loo LH
    Arch Toxicol; 2016 Nov; 90(11):2793-2808. PubMed ID: 26612367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Support Vector Machine, Naïve Bayes and Logistic Regression for Assessing the Necessity for Coronary Angiography.
    Golpour P; Ghayour-Mobarhan M; Saki A; Esmaily H; Taghipour A; Tajfard M; Ghazizadeh H; Moohebati M; Ferns GA
    Int J Environ Res Public Health; 2020 Sep; 17(18):. PubMed ID: 32899733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional transepithelial transport measurements to detect nephrotoxicity in vitro using the RPTEC/TERT1 cell line.
    Secker PF; Schlichenmaier N; Beilmann M; Deschl U; Dietrich DR
    Arch Toxicol; 2019 Jul; 93(7):1965-1978. PubMed ID: 31076804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of cancer cells using computational analysis of dynamic morphology.
    Hasan MR; Hassan N; Khan R; Kim YT; Iqbal SM
    Comput Methods Programs Biomed; 2018 Mar; 156():105-112. PubMed ID: 29428061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of machine learning and nonlinear statistical tools for ADME prediction.
    Sakiyama Y
    Expert Opin Drug Metab Toxicol; 2009 Feb; 5(2):149-69. PubMed ID: 19239395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.