BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 25522000)

  • 41. Evaluation of a dual-wavelength size exclusion HPLC method with improved sensitivity to detect protein aggregates and its use to better characterize degradation pathways of an IgG1 monoclonal antibody.
    Bond MD; Panek ME; Zhang Z; Wang D; Mehndiratta P; Zhao H; Gunton K; Ni A; Nedved ML; Burman S; Volkin DB
    J Pharm Sci; 2010 Jun; 99(6):2582-97. PubMed ID: 20039394
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vitro stability of lyophilized and reconstituted recombinant activated factor VII formulated for storage at room temperature.
    Nedergaard H; Vestergaard S; Jensen PT; Kristiansen MW; Jensen MB; Ostergaard PB; Norsell T; Bjerre J
    Clin Ther; 2008 Jul; 30(7):1309-15. PubMed ID: 18691990
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Impact of Annealing and Controlled Ice Nucleation on Properties of A Lyophilized 50 mg/ml MAB Formulation.
    Wang J; Searles JA; Torres E; Tchessalov SA; Young AL
    J Pharm Sci; 2022 Sep; 111(9):2639-2644. PubMed ID: 35613684
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Freeze-drying of nanosuspensions, part 3: investigation of factors compromising storage stability of highly concentrated drug nanosuspensions.
    Beirowski J; Inghelbrecht S; Arien A; Gieseler H
    J Pharm Sci; 2012 Jan; 101(1):354-62. PubMed ID: 21905035
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Calculating the mass of subvisible protein particles with improved accuracy using microflow imaging data.
    Kalonia C; Kumru OS; Prajapati I; Mathaes R; Engert J; Zhou S; Middaugh CR; Volkin DB
    J Pharm Sci; 2015 Feb; 104(2):536-47. PubMed ID: 25302696
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of a lyophilized plasmid/LPEI polyplex formulation with long-term stability--A step closer from promising technology to application.
    Kasper JC; Schaffert D; Ogris M; Wagner E; Friess W
    J Control Release; 2011 May; 151(3):246-55. PubMed ID: 21223985
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lyophilization cycle development for interleukin-2.
    Vemuri S
    Dev Biol Stand; 1992; 74():341-51. PubMed ID: 1592183
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Freeze-Drying Above the Glass Transition Temperature in Amorphous Protein Formulations While Maintaining Product Quality and Improving Process Efficiency.
    Depaz RA; Pansare S; Patel SM
    J Pharm Sci; 2016 Jan; 105(1):40-9. PubMed ID: 26580140
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of stable lyophilized protein drug products.
    Remmele RL; Krishnan S; Callahan WJ
    Curr Pharm Biotechnol; 2012 Mar; 13(3):471-96. PubMed ID: 22283723
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reduced Subvisible Particle Formation in Lyophilized Intravenous Immunoglobulin Formulations Containing Polysorbate 20.
    Zhou C; Qi W; Lewis EN; Randolph TW; Carpenter JF
    J Pharm Sci; 2016 Aug; 105(8):2302-9. PubMed ID: 27290624
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Systematic investigation of the effect of lyophilizate collapse on pharmaceutically relevant proteins, part 2: stability during storage at elevated temperatures.
    Schersch K; Betz O; Garidel P; Muehlau S; Bassarab S; Winter G
    J Pharm Sci; 2012 Jul; 101(7):2288-306. PubMed ID: 22517663
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of subvisible particle formation during the filling pump operation of a monoclonal antibody solution.
    Nayak A; Colandene J; Bradford V; Perkins M
    J Pharm Sci; 2011 Oct; 100(10):4198-204. PubMed ID: 21698601
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improved Comparative Signature Diagrams to Evaluate Similarity of Storage Stability Profiles of Different IgG1 mAbs.
    Kim JH; Joshi SB; Esfandiary R; Iyer V; Bishop SM; Volkin DB; Middaugh CR
    J Pharm Sci; 2016 Mar; 105(3):1028-35. PubMed ID: 26886311
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stability of buffer-free freeze-dried formulations: A feasibility study of a monoclonal antibody at high protein concentrations.
    Garidel P; Pevestorf B; Bahrenburg S
    Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):125-39. PubMed ID: 26455339
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of buffer composition and processing conditions on aggregation of bovine IgG during freeze-drying.
    Sarciaux JM; Mansour S; Hageman MJ; Nail SL
    J Pharm Sci; 1999 Dec; 88(12):1354-61. PubMed ID: 10585234
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Equilibrium studies of protein aggregates and homogeneous nucleation in protein formulation.
    Kiese S; Pappenberger A; Friess W; Mahler HC
    J Pharm Sci; 2010 Feb; 99(2):632-44. PubMed ID: 19548315
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Systematic investigation of the effect of lyophilizate collapse on pharmaceutically relevant proteins I: stability after freeze-drying.
    Schersch K; Betz O; Garidel P; Muehlau S; Bassarab S; Winter G
    J Pharm Sci; 2010 May; 99(5):2256-78. PubMed ID: 20039389
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Induction and analysis of aggregates in a liquid IgG1-antibody formulation.
    Mahler HC; Müller R; Friess W; Delille A; Matheus S
    Eur J Pharm Biopharm; 2005 Apr; 59(3):407-17. PubMed ID: 15760721
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Freeze-drying of proteins with glass-forming oligosaccharide-derived sugar alcohols.
    Kadoya S; Fujii K; Izutsu K; Yonemochi E; Terada K; Yomota C; Kawanishi T
    Int J Pharm; 2010 Apr; 389(1-2):107-13. PubMed ID: 20097277
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Raman spectroscopic characterization of drying-induced structural changes in a therapeutic antibody: correlating structural changes with long-term stability.
    Sane SU; Wong R; Hsu CC
    J Pharm Sci; 2004 Apr; 93(4):1005-18. PubMed ID: 14999736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.