BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 25522056)

  • 1. Fitting a distribution to microbial counts: making sense of zeroes.
    Duarte AS; Stockmarr A; Nauta MJ
    Int J Food Microbiol; 2015 Mar; 196():40-50. PubMed ID: 25522056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of microbial count distributions on human health risk estimates.
    Duarte AS; Nauta MJ
    Int J Food Microbiol; 2015 Feb; 195():48-57. PubMed ID: 25506750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sample size guidelines for fitting a lognormal probability distribution to censored most probable number data with a Markov chain Monte Carlo method.
    Williams MS; Cao Y; Ebel ED
    Int J Food Microbiol; 2013 Jul; 165(2):89-96. PubMed ID: 23727652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of Absence: Bayesian Way to Reveal True Zeros Among Occupational Exposures.
    Lavoue J; Burstyn I
    Ann Work Expo Health; 2021 Jan; 65(1):84-95. PubMed ID: 32914163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of screening-test negative samples not enumerated by MPN.
    Corbellini LG; Duarte AS; de Knegt LV; da Silva LE; Cardoso M; Nauta M
    Int J Food Microbiol; 2015 Jul; 205():1-6. PubMed ID: 25866905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbiological risk assessment models for partitioning and mixing during food handling.
    Nauta MJ
    Int J Food Microbiol; 2005 Apr; 100(1-3):311-22. PubMed ID: 15854714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial-Maximum Likelihood Estimation Tool for Microbial Quantification in Food From Left-Censored Data Using Maximum Likelihood Estimation for Microbial Risk Assessment.
    Bahk GJ; Lee HJ
    Front Microbiol; 2021; 12():730733. PubMed ID: 35002994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling homogeneous and heterogeneous microbial contaminations in a powdered food product.
    Jongenburger I; Reij MW; Boer EP; Zwietering MH; Gorris LG
    Int J Food Microbiol; 2012 Jun; 157(1):35-44. PubMed ID: 22591548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Generalized QMRA Beta-Poisson Dose-Response Model.
    Xie G; Roiko A; Stratton H; Lemckert C; Dunn PK; Mengersen K
    Risk Anal; 2016 Oct; 36(10):1948-1958. PubMed ID: 26849688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel derivation of a within-batch sampling plan based on a Poisson-gamma model characterising low microbial counts in foods.
    Gonzales-Barron U; Zwietering MH; Butler F
    Int J Food Microbiol; 2013 Feb; 161(2):84-96. PubMed ID: 23279817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model approach to estimate the probability of accepting a lot of heterogeneously contaminated powdered food using different sampling strategies.
    Valero A; Pasquali F; De Cesare A; Manfreda G
    Int J Food Microbiol; 2014 Aug; 184():35-8. PubMed ID: 24462218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methods for Handling Left-Censored Data in Quantitative Microbial Risk Assessment.
    Canales RA; Wilson AM; Pearce-Walker JI; Verhougstraete MP; Reynolds KA
    Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30120116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fitting a lognormal distribution to enumeration and absence/presence data.
    Commeau N; Parent E; Delignette-Muller ML; Cornu M
    Int J Food Microbiol; 2012 Apr; 155(3):146-52. PubMed ID: 22353674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lessons from the organization of a proficiency testing program in food microbiology by interlaboratory comparison: analytical methods in use, impact of methods on bacterial counts and measurement uncertainty of bacterial counts.
    Augustin JC; Carlier V
    Food Microbiol; 2006 Feb; 23(1):1-38. PubMed ID: 16942983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors influencing the accuracy of the plating method used to enumerate low numbers of viable micro-organisms in food.
    Jongenburger I; Reij MW; Boer EP; Gorris LG; Zwietering MH
    Int J Food Microbiol; 2010 Sep; 143(1-2):32-40. PubMed ID: 20724016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studying the effects of POs and MCs on the Salmonella ALOP with a quantitative risk assessment model for beef production.
    Tuominen P; Ranta J; Maijala R
    Int J Food Microbiol; 2007 Aug; 118(1):35-51. PubMed ID: 17658191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Usefulness of indicator bacteria as potential marker of Campylobacter contamination in broiler carcasses.
    Roccato A; Mancin M; Barco L; Cibin V; Antonello K; Cocola F; Ricci A
    Int J Food Microbiol; 2018 Jul; 276():63-70. PubMed ID: 29674142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Most Probable Curve method - A robust approach to estimate kinetic models from low plate count data resulting in reduced uncertainty.
    Garre A; Zwietering MH; van Boekel MAJS
    Int J Food Microbiol; 2022 Nov; 380():109871. PubMed ID: 35985079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods for fitting a parametric probability distribution to most probable number data.
    Williams MS; Ebel ED
    Int J Food Microbiol; 2012 Jul; 157(2):251-8. PubMed ID: 22658686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 'MicroHibro': A software tool for predictive microbiology and microbial risk assessment in foods.
    González SC; Possas A; Carrasco E; Valero A; Bolívar A; Posada-Izquierdo GD; García-Gimeno RM; Zurera G; Pérez-Rodríguez F
    Int J Food Microbiol; 2019 Feb; 290():226-236. PubMed ID: 30368088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.