BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 25522056)

  • 21. Use of results of microbiological analyses for risk-based control of Listeria monocytogenes in marinated broiler legs.
    Aarnisalo K; Vihavainen E; Rantala L; Maijala R; Suihko ML; Hielm S; Tuominen P; Ranta J; Raaska L
    Int J Food Microbiol; 2008 Feb; 121(3):275-84. PubMed ID: 18155311
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Changes in the microbial picture during the production of poultry salami].
    Pipová M; Turek P; Laciaková A; Ivanová M; Plachá I
    Vet Med (Praha); 1997 Mar; 42(3):81-5. PubMed ID: 9182395
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tail or artefact? Illustration of the impact that uncertainty of the serial dilution and cell enumeration methods has on microbial inactivation.
    Garre A; Egea JA; Esnoz A; Palop A; Fernandez PS
    Food Res Int; 2019 May; 119():76-83. PubMed ID: 30884713
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimating true human and animal host source contribution in quantitative microbial source tracking using the Monte Carlo method.
    Wang D; Silkie SS; Nelson KL; Wuertz S
    Water Res; 2010 Sep; 44(16):4760-75. PubMed ID: 20822794
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimating the correlation between concentrations of two species of bacteria with censored microbial testing data.
    Williams MS; Ebel ED
    Int J Food Microbiol; 2014 Apr; 175():1-5. PubMed ID: 24491921
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A study of the randomly fluctuating microbial counts in foods and water using the Expanded Fermi Solution as a model.
    Peleg M; Normand MD; Corradini MG
    J Food Sci; 2012 Jan; 77(1):R63-71. PubMed ID: 22122407
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimation of Microbial Concentration in Food Products from Qualitative, Microbiological Test Data with the MPN Technique.
    Fujikawa H
    Shokuhin Eiseigaku Zasshi; 2017; 58(4):173-179. PubMed ID: 28855471
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An expanded Fermi solution for microbial risk assessment.
    Peleg M; Normand MD; Horowitz J; Corradini MG
    Int J Food Microbiol; 2007 Jan; 113(1):92-101. PubMed ID: 17014921
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Uncertainty distribution associated with estimating a proportion in microbial risk assessment.
    Miconnet N; Cornu M; Beaufort A; Rosso L; Denis JB
    Risk Anal; 2005 Feb; 25(1):39-48. PubMed ID: 15787755
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determining the microbiological criteria for lot rejection from the performance objective or food safety objective.
    Whiting RC; Rainosek A; Buchanan RL; Miliotis M; Labarre D; Long W; Ruple A; Schaub S
    Int J Food Microbiol; 2006 Aug; 110(3):263-7. PubMed ID: 16784791
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimating the probability of recontamination via the air using Monte Carlo simulations.
    den Aantrekker ED; Beumer RR; van Gerwen SJ; Zwietering MH; van Schothorst M; Boom RM
    Int J Food Microbiol; 2003 Oct; 87(1-2):1-15. PubMed ID: 12927702
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potential application of quantitative microbiological risk assessment techniques to an aseptic-UHT process in the food industry.
    Pujol L; Albert I; Johnson NB; Membré JM
    Int J Food Microbiol; 2013 Apr; 162(3):283-96. PubMed ID: 23454820
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimation of microbial growth using population measurements subject to a detection limit.
    Shorten PR; Pleasants AB; Soboleva TK
    Int J Food Microbiol; 2006 May; 108(3):369-75. PubMed ID: 16497400
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The impact of consumer phase models in microbial risk analysis.
    Nauta M; Christensen B
    Risk Anal; 2011 Feb; 31(2):255-65. PubMed ID: 20738819
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Binding of nontarget microorganisms from food washes to anti-Salmonella and anti-E. coli O157 immunomagnetic beads: minimizing the errors of random sampling in extreme dilute systems.
    Irwin P; Nguyen TL; Chen CY
    Anal Bioanal Chem; 2008 May; 391(2):515-24. PubMed ID: 18344016
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Analysis of variance of bacterial counts in milk. 1. Characterization of total variance and the components of variance random sampling error, methodologic error and variation between parallel errors during storage].
    Böhmer L; Hildebrandt G
    Berl Munch Tierarztl Wochenschr; 1998 Jan; 111(1):13-20. PubMed ID: 9499621
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detection and quantification of bacterial spoilage in milk and pork meat using MALDI-TOF-MS and multivariate analysis.
    Nicolaou N; Xu Y; Goodacre R
    Anal Chem; 2012 Jul; 84(14):5951-8. PubMed ID: 22698768
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Practical considerations for the interpretation of microbial testing results based on small numbers of samples.
    Hoelzer K; Pouillot R
    Foodborne Pathog Dis; 2013 Nov; 10(11):907-15. PubMed ID: 23869961
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Validation of the Soleris NF-TVC method for determination of total viable count in a variety of foods.
    Mozola M; Gray RL; Feldpausch J; Alles S; McDougal S; Montei C; Sarver R; Steiner B; Cooper C; Rice J
    J AOAC Int; 2013; 96(2):399-403. PubMed ID: 23767366
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temperature-independent pectin gel method for aerobic plate count in dairy and nondairy food products: collaborative study.
    Roth JN
    J Assoc Off Anal Chem; 1988; 71(2):343-9. PubMed ID: 3384783
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.