These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 25522261)

  • 1. Integrated nanotubes, etch tracks, and nanoribbons in crystallographic alignment to a graphene lattice.
    Hunley DP; Boland MJ; Strachan DR
    Adv Mater; 2015 Feb; 27(5):813-8. PubMed ID: 25522261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystallographically aligned carbon nanotubes grown on few-layer graphene films.
    Hunley DP; Johnson SL; Stieha JK; Sundararajan A; Meacham AT; Ivanov IN; Strachan DR
    ACS Nano; 2011 Aug; 5(8):6403-9. PubMed ID: 21749089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Aligned Polymeric Nanowire Etch-Mask Lithography Enabling the Integration of Graphene Nanoribbon Transistors.
    Jeon S; Han P; Jeong J; Hwang WS; Hong SW
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic structure of epitaxial graphene sidewall nanoribbons: flat graphene, miniribbons, and the confinement gap.
    Palacio I; Celis A; Nair MN; Gloter A; Zobelli A; Sicot M; Malterre D; Nevius MS; de Heer WA; Berger C; Conrad EH; Taleb-Ibrahimi A; Tejeda A
    Nano Lett; 2015 Jan; 15(1):182-9. PubMed ID: 25457853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective etching of graphene edges by hydrogen plasma.
    Xie L; Jiao L; Dai H
    J Am Chem Soc; 2010 Oct; 132(42):14751-3. PubMed ID: 20923144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct oriented growth of armchair graphene nanoribbons on germanium.
    Jacobberger RM; Kiraly B; Fortin-Deschenes M; Levesque PL; McElhinny KM; Brady GJ; Rojas Delgado R; Singha Roy S; Mannix A; Lagally MG; Evans PG; Desjardins P; Martel R; Hersam MC; Guisinger NP; Arnold MS
    Nat Commun; 2015 Aug; 6():8006. PubMed ID: 26258594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography.
    Tapasztó L; Dobrik G; Lambin P; Biró LP
    Nat Nanotechnol; 2008 Jul; 3(7):397-401. PubMed ID: 18654562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallographic etching of few-layer graphene.
    Datta SS; Strachan DR; Khamis SM; Johnson AT
    Nano Lett; 2008 Jul; 8(7):1912-5. PubMed ID: 18570483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seed-Initiated Anisotropic Growth of Unidirectional Armchair Graphene Nanoribbon Arrays on Germanium.
    Way AJ; Jacobberger RM; Arnold MS
    Nano Lett; 2018 Feb; 18(2):898-906. PubMed ID: 29382200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons.
    Yu SS; Zheng WT
    Nanoscale; 2010 Jul; 2(7):1069-82. PubMed ID: 20648331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of ribbon width on electrical transport properties of graphene nanoribbons.
    Bang K; Chee SS; Kim K; Son M; Jang H; Lee BH; Baik KH; Myoung JM; Ham MH
    Nano Converg; 2018; 5(1):7. PubMed ID: 29577013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct growth of aligned graphitic nanoribbons from a DNA template by chemical vapour deposition.
    Sokolov AN; Yap FL; Liu N; Kim K; Ci L; Johnson OB; Wang H; Vosgueritchian M; Koh AL; Chen J; Park J; Bao Z
    Nat Commun; 2013; 4():2402. PubMed ID: 23989553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable Hyperbolic Metamaterials Based on Self-Assembled Carbon Nanotubes.
    Roberts JA; Yu SJ; Ho PH; Schoeche S; Falk AL; Fan JA
    Nano Lett; 2019 May; 19(5):3131-3137. PubMed ID: 30950280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sharpening the chemical scissors to unzip carbon nanotubes: crystalline graphene nanoribbons.
    Terrones M
    ACS Nano; 2010 Apr; 4(4):1775-81. PubMed ID: 20420468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembled functionalized graphene nanoribbons from carbon nanotubes.
    Cunha E; Proença MF; Costa F; Fernandes AJ; Ferro MA; Lopes PE; González-Debs M; Melle-Franco M; Deepak FL; Paiva MC
    ChemistryOpen; 2015 Apr; 4(2):115-9. PubMed ID: 25969808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective etching of metallic carbon nanotubes by gas-phase reaction.
    Zhang G; Qi P; Wang X; Lu Y; Li X; Tu R; Bangsaruntip S; Mann D; Zhang L; Dai H
    Science; 2006 Nov; 314(5801):974-7. PubMed ID: 17095698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational fabrication of graphene nanoribbons using a nanowire etch mask.
    Bai J; Duan X; Huang Y
    Nano Lett; 2009 May; 9(5):2083-7. PubMed ID: 19344151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and optical probing of highly extended, ultrathin graphene nanoribbons in carbon nanotubes.
    Lim HE; Miyata Y; Fujihara M; Okada S; Liu Z; Arifin ; Sato K; Omachi H; Kitaura R; Irle S; Suenaga K; Shinohara H
    ACS Nano; 2015 May; 9(5):5034-40. PubMed ID: 25868574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.