These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 25522367)

  • 1. Epistatic adaptive evolution of human color vision.
    Yokoyama S; Xing J; Liu Y; Faggionato D; Altun A; Starmer WT
    PLoS Genet; 2014 Dec; 10(12):e1004884. PubMed ID: 25522367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive evolutionary paths from UV reception to sensing violet light by epistatic interactions.
    Yokoyama S; Altun A; Jia H; Yang H; Koyama T; Faggionato D; Liu Y; Starmer WT
    Sci Adv; 2015 Sep; 1(8):e1500162. PubMed ID: 26601250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple method for studying the molecular mechanisms of ultraviolet and violet reception in vertebrates.
    Yokoyama S; Tada T; Liu Y; Faggionato D; Altun A
    BMC Evol Biol; 2016 Mar; 16():64. PubMed ID: 27001075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contrasting modes of evolution of the visual pigments in Heliconius butterflies.
    Yuan F; Bernard GD; Le J; Briscoe AD
    Mol Biol Evol; 2010 Oct; 27(10):2392-405. PubMed ID: 20478921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of dim-light and color vision pigments.
    Yokoyama S
    Annu Rev Genomics Hum Genet; 2008; 9():259-82. PubMed ID: 18544031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution.
    Deeb SS; Wakefield MJ; Tada T; Marotte L; Yokoyama S; Marshall Graves JA
    Mol Biol Evol; 2003 Oct; 20(10):1642-9. PubMed ID: 12885969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. As Blind as a Bat? Opsin Phylogenetics Illuminates the Evolution of Color Vision in Bats.
    Simões BF; Foley NM; Hughes GM; Zhao H; Zhang S; Rossiter SJ; Teeling EC
    Mol Biol Evol; 2019 Jan; 36(1):54-68. PubMed ID: 30476197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Avian visual pigments: characteristics, spectral tuning, and evolution.
    Hart NS; Hunt DM
    Am Nat; 2007 Jan; 169 Suppl 1():S7-26. PubMed ID: 19426092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Into the blue: gene duplication and loss underlie color vision adaptations in a deep-sea chimaera, the elephant shark Callorhinchus milii.
    Davies WL; Carvalho LS; Tay BH; Brenner S; Hunt DM; Venkatesh B
    Genome Res; 2009 Mar; 19(3):415-26. PubMed ID: 19196633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. S cones: Evolution, retinal distribution, development, and spectral sensitivity.
    Hunt DM; Peichl L
    Vis Neurosci; 2014 Mar; 31(2):115-38. PubMed ID: 23895771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The molecular evolution of avian ultraviolet- and violet-sensitive visual pigments.
    Carvalho LS; Cowing JA; Wilkie SE; Bowmaker JK; Hunt DM
    Mol Biol Evol; 2007 Aug; 24(8):1843-52. PubMed ID: 17556758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary replacement of UV vision by violet vision in fish.
    Tada T; Altun A; Yokoyama S
    Proc Natl Acad Sci U S A; 2009 Oct; 106(41):17457-62. PubMed ID: 19805066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectral tuning in vertebrate short wavelength-sensitive 1 (SWS1) visual pigments: can wavelength sensitivity be inferred from sequence data?
    Hauser FE; van Hazel I; Chang BS
    J Exp Zool B Mol Dev Evol; 2014 Nov; 322(7):529-39. PubMed ID: 24890094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterization of spectral tuning mechanisms in the great bowerbird short-wavelength sensitive visual pigment (SWS1), and the origins of UV/violet vision in passerines and parrots.
    van Hazel I; Sabouhanian A; Day L; Endler JA; Chang BS
    BMC Evol Biol; 2013 Nov; 13():250. PubMed ID: 24499383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Current views on vision of mammals].
    Khokhlova TV
    Zh Obshch Biol; 2012; 73(6):418-34. PubMed ID: 23330397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution and spectral tuning of visual pigments in birds and mammals.
    Hunt DM; Carvalho LS; Cowing JA; Davies WL
    Philos Trans R Soc Lond B Biol Sci; 2009 Oct; 364(1531):2941-55. PubMed ID: 19720655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tertiary structure and spectral tuning of UV and violet pigments in vertebrates.
    Yokoyama S; Starmer WT; Takahashi Y; Tada T
    Gene; 2006 Jan; 365():95-103. PubMed ID: 16343816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral tuning and evolution of primate short-wavelength-sensitive visual pigments.
    Carvalho LS; Davies WL; Robinson PR; Hunt DM
    Proc Biol Sci; 2012 Jan; 279(1727):387-93. PubMed ID: 21697177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical and molecular analyses of evolutionary significance of red-green color vision and color blindness in vertebrates.
    Yokoyama S; Takenaka N
    Mol Biol Evol; 2005 Apr; 22(4):968-75. PubMed ID: 15647522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The molecular genetics and evolution of colour and polarization vision in stomatopod crustaceans.
    Cronin TW; Porter ML; Bok MJ; Wolf JB; Robinson PR
    Ophthalmic Physiol Opt; 2010 Sep; 30(5):460-9. PubMed ID: 20883329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.