These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 25522367)

  • 21. A novel amino acid substitution is responsible for spectral tuning in a rodent violet-sensitive visual pigment.
    Parry JW; Poopalasundaram S; Bowmaker JK; Hunt DM
    Biochemistry; 2004 Jun; 43(25):8014-20. PubMed ID: 15209496
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The complex evolutionary history of seeing red: molecular phylogeny and the evolution of an adaptive visual system in deep-sea dragonfishes (Stomiiformes: Stomiidae).
    Kenaley CP; Devaney SC; Fjeran TT
    Evolution; 2014 Apr; 68(4):996-1013. PubMed ID: 24274363
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cone visual pigments of monotremes: filling the phylogenetic gap.
    Wakefield MJ; Anderson M; Chang E; Wei KJ; Kaul R; Graves JA; Grützner F; Deeb SS
    Vis Neurosci; 2008; 25(3):257-64. PubMed ID: 18598396
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel spectral tuning in the short wavelength-sensitive (SWS1 and SWS2) pigments of bluefin killifish (Lucania goodei).
    Yokoyama S; Takenaka N; Blow N
    Gene; 2007 Jul; 396(1):196-202. PubMed ID: 17498892
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The molecular genetics and evolution of red and green color vision in vertebrates.
    Yokoyama S; Radlwimmer FB
    Genetics; 2001 Aug; 158(4):1697-710. PubMed ID: 11545071
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spectral Tuning of Killer Whale (Orcinus orca) Rhodopsin: Evidence for Positive Selection and Functional Adaptation in a Cetacean Visual Pigment.
    Dungan SZ; Kosyakov A; Chang BS
    Mol Biol Evol; 2016 Feb; 33(2):323-36. PubMed ID: 26486871
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptive plasticity during the development of colour vision.
    Wagner HJ; Kröger RH
    Prog Retin Eye Res; 2005 Jul; 24(4):521-36. PubMed ID: 15845347
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrophysiological assessment of spectral sensitivity in adult Nile tilapia Oreochromis niloticus: evidence for violet sensitivity.
    Lisney TJ; Studd E; Hawryshyn CW
    J Exp Biol; 2010 May; 213(Pt 9):1453-63. PubMed ID: 20400629
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vision in the ultraviolet.
    Hunt DM; Wilkie SE; Bowmaker JK; Poopalasundaram S
    Cell Mol Life Sci; 2001 Oct; 58(11):1583-98. PubMed ID: 11706986
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New primers for the avian SWS1 pigment opsin gene reveal new amino acid configurations in spectral sensitivity tuning sites.
    Odeen A; Håstad O
    J Hered; 2009; 100(6):784-9. PubMed ID: 19687143
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mix and match color vision: tuning spectral sensitivity by differential opsin gene expression in Lake Malawi cichlids.
    Parry JW; Carleton KL; Spady T; Carboo A; Hunt DM; Bowmaker JK
    Curr Biol; 2005 Oct; 15(19):1734-9. PubMed ID: 16213819
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The evolution of vertebrate color vision.
    Jacobs GH
    Adv Exp Med Biol; 2012; 739():156-72. PubMed ID: 22399401
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nocturnal light environments influence color vision and signatures of selection on the OPN1SW opsin gene in nocturnal lemurs.
    Veilleux CC; Louis EE; Bolnick DA
    Mol Biol Evol; 2013 Jun; 30(6):1420-37. PubMed ID: 23519316
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular characterization of visual pigments in Branchiopoda and the evolution of opsins in Arthropoda.
    Kashiyama K; Seki T; Numata H; Goto SG
    Mol Biol Evol; 2009 Feb; 26(2):299-311. PubMed ID: 18984904
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distinct evolutionary patterns between two duplicated color vision genes within cyprinid fishes.
    Li Z; Gan X; He S
    J Mol Evol; 2009 Oct; 69(4):346-59. PubMed ID: 19838750
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spectral sensitivity of cone photoreceptors and opsin expression in two colour-divergent lineages of the lizard Ctenophorus decresii.
    Yewers MS; McLean CA; Moussalli A; Stuart-Fox D; Bennett AT; Knott B
    J Exp Biol; 2015 May; 218(Pt 10):1556-63. PubMed ID: 25827838
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional characterization, tuning, and regulation of visual pigment gene expression in an anadromous lamprey.
    Davies WL; Cowing JA; Carvalho LS; Potter IC; Trezise AE; Hunt DM; Collin SP
    FASEB J; 2007 Sep; 21(11):2713-24. PubMed ID: 17463225
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diversification of non-visual photopigment parapinopsin in spectral sensitivity for diverse pineal functions.
    Koyanagi M; Wada S; Kawano-Yamashita E; Hara Y; Kuraku S; Kosaka S; Kawakami K; Tamotsu S; Tsukamoto H; Shichida Y; Terakita A
    BMC Biol; 2015 Sep; 13():73. PubMed ID: 26370232
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetic basis of spectral tuning in the violet-sensitive visual pigment of African clawed frog, Xenopus laevis.
    Takahashi Y; Yokoyama S
    Genetics; 2005 Nov; 171(3):1153-60. PubMed ID: 16079229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Convergent spectral shifts to blue-green vision in mammals extends the known sensitivity of vertebrate M/LWS pigments.
    Chi H; Cui Y; Rossiter SJ; Liu Y
    Proc Natl Acad Sci U S A; 2020 Apr; 117(15):8303-8305. PubMed ID: 32241894
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.