These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 25522367)

  • 41. Diversification of non-visual photopigment parapinopsin in spectral sensitivity for diverse pineal functions.
    Koyanagi M; Wada S; Kawano-Yamashita E; Hara Y; Kuraku S; Kosaka S; Kawakami K; Tamotsu S; Tsukamoto H; Shichida Y; Terakita A
    BMC Biol; 2015 Sep; 13():73. PubMed ID: 26370232
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genetic basis of spectral tuning in the violet-sensitive visual pigment of African clawed frog, Xenopus laevis.
    Takahashi Y; Yokoyama S
    Genetics; 2005 Nov; 171(3):1153-60. PubMed ID: 16079229
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Convergent spectral shifts to blue-green vision in mammals extends the known sensitivity of vertebrate M/LWS pigments.
    Chi H; Cui Y; Rossiter SJ; Liu Y
    Proc Natl Acad Sci U S A; 2020 Apr; 117(15):8303-8305. PubMed ID: 32241894
    [TBL] [Abstract][Full Text] [Related]  

  • 44. UV photoreceptors and UV-yellow wing pigments in Heliconius butterflies allow a color signal to serve both mimicry and intraspecific communication.
    Bybee SM; Yuan F; Ramstetter MD; Llorente-Bousquets J; Reed RD; Osorio D; Briscoe AD
    Am Nat; 2012 Jan; 179(1):38-51. PubMed ID: 22173459
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nocturnal light environments and species ecology: implications for nocturnal color vision in forests.
    Veilleux CC; Cummings ME
    J Exp Biol; 2012 Dec; 215(Pt 23):4085-96. PubMed ID: 22899522
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanism of spectral tuning in the dolphin visual pigments.
    Fasick JI; Robsinson PR
    Biochemistry; 1998 Jan; 37(2):433-8. PubMed ID: 9471225
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The evolution of color vision in insects.
    Briscoe AD; Chittka L
    Annu Rev Entomol; 2001; 46():471-510. PubMed ID: 11112177
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Verriest Lecture 2009: recent progress in understanding mammalian color vision.
    Jacobs GH
    Ophthalmic Physiol Opt; 2010 Sep; 30(5):422-34. PubMed ID: 20883325
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular Data Support an Early Shift to an Intermediate-Light Niche in the Evolution of Mammals.
    Liu Y; Chi H; Li L; Rossiter SJ; Zhang S
    Mol Biol Evol; 2018 May; 35(5):1130-1134. PubMed ID: 29462332
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evolution of colour vision in vertebrates.
    Bowmaker JK
    Eye (Lond); 1998; 12 ( Pt 3b)():541-7. PubMed ID: 9775215
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Visual pigment molecular evolution in the Trinidadian pike cichlid (Crenicichla frenata): a less colorful world for neotropical cichlids?
    Weadick CJ; Loew ER; Rodd FH; Chang BS
    Mol Biol Evol; 2012 Oct; 29(10):3045-60. PubMed ID: 22809797
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular genetic basis of adaptive selection: examples from color vision in vertebrates.
    Yokoyama S
    Annu Rev Genet; 1997; 31():315-36. PubMed ID: 9442898
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spectral tuning of shortwave-sensitive visual pigments in vertebrates.
    Hunt DM; Carvalho LS; Cowing JA; Parry JW; Wilkie SE; Davies WL; Bowmaker JK
    Photochem Photobiol; 2007; 83(2):303-10. PubMed ID: 17576346
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Losses of functional opsin genes, short-wavelength cone photopigments, and color vision--a significant trend in the evolution of mammalian vision.
    Jacobs GH
    Vis Neurosci; 2013 Mar; 30(1-2):39-53. PubMed ID: 23286388
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments.
    Cowing JA; Poopalasundaram S; Wilkie SE; Robinson PR; Bowmaker JK; Hunt DM
    Biochem J; 2002 Oct; 367(Pt 1):129-35. PubMed ID: 12099889
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adaptive gene loss reflects differences in the visual ecology of basal vertebrates.
    Davies WL; Collin SP; Hunt DM
    Mol Biol Evol; 2009 Aug; 26(8):1803-9. PubMed ID: 19398493
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Adaptations to an extreme environment: retinal organisation and spectral properties of photoreceptors in Antarctic notothenioid fish.
    Pointer MA; Cheng CH; Bowmaker JK; Parry JW; Soto N; Jeffery G; Cowing JA; Hunt DM
    J Exp Biol; 2005 Jun; 208(Pt 12):2363-76. PubMed ID: 15939776
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Eyeshine and spectral tuning of long wavelength-sensitive rhodopsins: no evidence for red-sensitive photoreceptors among five Nymphalini butterfly species.
    Briscoe AD; Bernard GD
    J Exp Biol; 2005 Feb; 208(Pt 4):687-96. PubMed ID: 15695761
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Functional trade-offs and environmental variation shaped ancient trajectories in the evolution of dim-light vision.
    Castiglione GM; Chang BS
    Elife; 2018 Oct; 7():. PubMed ID: 30362942
    [TBL] [Abstract][Full Text] [Related]  

  • 60. How parrots see their colours: novelty in the visual pigments of Platycercus elegans.
    Knott B; Davies WI; Carvalho LS; Berg ML; Buchanan KL; Bowmaker JK; Bennett AT; Hunt DM
    J Exp Biol; 2013 Dec; 216(Pt 23):4454-61. PubMed ID: 24259259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.