These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 25522519)
21. Effects of lipidic carbon sources on the extracellular lipolytic activity of a newly isolated strain of Bacillus subtilis. Takaç S; Marul B J Ind Microbiol Biotechnol; 2008 Sep; 35(9):1019-25. PubMed ID: 18521640 [TBL] [Abstract][Full Text] [Related]
22. Enantioselective transesterification of glycidol catalysed by a novel lipase expressed from Bacillus subtilis. Wang L; Tai JD; Wang R; Xun EN; Wei XF; Wang L; Wang Z Biotechnol Appl Biochem; 2010 May; 56(1):1-6. PubMed ID: 20397973 [TBL] [Abstract][Full Text] [Related]
23. Simultaneous production of alkaline lipase and protease by antibiotic and heavy metal tolerant Pseudomonas aeruginosa. Bisht D; Yadav SK; Gautam P; Darmwal NS J Basic Microbiol; 2013 Sep; 53(9):715-22. PubMed ID: 22961768 [TBL] [Abstract][Full Text] [Related]
24. Engineering lipase A from mesophilic Bacillus subtilis for activity at low temperatures. Kumar V; Yedavalli P; Gupta V; Rao NM Protein Eng Des Sel; 2014 Mar; 27(3):73-82. PubMed ID: 24402332 [TBL] [Abstract][Full Text] [Related]
25. Catalytic Role of Thermostable Metalloproteases from Bacillus subtilis KT004404 as Dehairing and Destaining Agent. Rehman R; Ahmed M; Siddique A; Hasan F; Hameed A; Jamal A Appl Biochem Biotechnol; 2017 Jan; 181(1):434-450. PubMed ID: 27604835 [TBL] [Abstract][Full Text] [Related]
26. Isolation of an organic solvent-tolerant bacterium Bacillus licheniformis PAL05 that is able to secrete solvent-stable lipase. Anbu P; Hur BK Biotechnol Appl Biochem; 2014; 61(5):528-34. PubMed ID: 24397298 [TBL] [Abstract][Full Text] [Related]
27. Influence of media composition on the production of alkaline α-amylase from Bacillus subtilis CB-18. Ogbonnaya N; Odiase A Acta Sci Pol Technol Aliment; 2012; 11(3):231-8. PubMed ID: 22744943 [TBL] [Abstract][Full Text] [Related]
28. Isolation of thermo-stable and solvent-tolerant Bacillus sp. lipase for the production of biodiesel. Sivaramakrishnan R; Muthukumar K Appl Biochem Biotechnol; 2012 Feb; 166(4):1095-111. PubMed ID: 22205320 [TBL] [Abstract][Full Text] [Related]
29. Optimization and characterization of alkaliphilic lipase from a novel Bacillus cereus NC7401 strain isolated from diesel fuel polluted soil. Akhter K; Karim I; Aziz B; Bibi A; Khan J; Akhtar T PLoS One; 2022; 17(8):e0273368. PubMed ID: 36040973 [TBL] [Abstract][Full Text] [Related]
30. Nitric oxide: a novel inducer for enhancement of microbial lipase production. Taskin M; Unver Y; Yildiz M; Ortucu S; Askin H Bioprocess Biosyst Eng; 2016 Nov; 39(11):1671-8. PubMed ID: 27316859 [TBL] [Abstract][Full Text] [Related]
31. A novel lipolytic enzyme, YcsK (LipC), located in the spore coat of Bacillus subtilis, is involved in spore germination. Masayama A; Kuwana R; Takamatsu H; Hemmi H; Yoshimura T; Watabe K; Moriyama R J Bacteriol; 2007 Mar; 189(6):2369-75. PubMed ID: 17220230 [TBL] [Abstract][Full Text] [Related]
32. Lipase-Secreting Bacillus Species in an Oil-Contaminated Habitat: Promising Strains to Alleviate Oil Pollution. Lee LP; Karbul HM; Citartan M; Gopinath SC; Lakshmipriya T; Tang TH Biomed Res Int; 2015; 2015():820575. PubMed ID: 26180812 [TBL] [Abstract][Full Text] [Related]
33. Construction of Pseudomonas aeruginosa SDK-6 with synthetic lipase gene cassette and optimization of different parameters using response surface methodology for over-expression of recombinant lipase. Kaur D; Singh RP; Gupta S Folia Microbiol (Praha); 2024 Dec; 69(6):1279-1290. PubMed ID: 38700831 [TBL] [Abstract][Full Text] [Related]
34. Molecular and enzymatic characterization of a subfamily I.4 lipase from an edible oil-degrader Bacillus sp. HH-01. Kamijo T; Saito A; Ema S; Yoh I; Hayashi H; Nagata R; Nagata Y; Ando A Antonie Van Leeuwenhoek; 2011 Feb; 99(2):179-87. PubMed ID: 20574645 [TBL] [Abstract][Full Text] [Related]
35. Functional expression of a novel alkaline-adapted lipase of Bacillus amyloliquefaciens from stinky tofu brine and development of immobilized enzyme for biodiesel production. Cai X; Ma J; Wei DZ; Lin JP; Wei W Antonie Van Leeuwenhoek; 2014 Nov; 106(5):1049-60. PubMed ID: 25199563 [TBL] [Abstract][Full Text] [Related]
36. Efficient binding of nickel ions to recombinant Bacillus subtilis spores. Hinc K; Ghandili S; Karbalaee G; Shali A; Noghabi KA; Ricca E; Ahmadian G Res Microbiol; 2010 Nov; 161(9):757-64. PubMed ID: 20863881 [TBL] [Abstract][Full Text] [Related]
38. A novel eurythermic and thermostale lipase LipM from Pseudomonas moraviensis M9 and its application in the partial hydrolysis of algal oil. Yang W; Cao H; Xu L; Zhang H; Yan Y BMC Biotechnol; 2015 Oct; 15():94. PubMed ID: 26463643 [TBL] [Abstract][Full Text] [Related]
39. Extracellular lipases from Bacillus subtilis: regulation of gene expression and enzyme activity by amino acid supply and external pH. Eggert T; Brockmeier U; Dröge MJ; Quax WJ; Jaeger KE FEMS Microbiol Lett; 2003 Aug; 225(2):319-24. PubMed ID: 12951259 [TBL] [Abstract][Full Text] [Related]
40. High-level production of a cold-active B-mannanase from Bacillus subtilis BS5 and its molecular cloning and expression. Huang JL; Bao LX; Zou HY; Che SG; Wang GX Mol Gen Mikrobiol Virusol; 2012; (4):14-7. PubMed ID: 23248847 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]