These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 25522852)

  • 1. Extracellular compounds produced by bacterial consortium promoting elements mobilization from polymetallic Kupferschiefer black shale (Fore-Sudetic Monocline, Poland).
    Włodarczyk A; Stasiuk R; Skłodowska A; Matlakowska R
    Chemosphere; 2015 Mar; 122():273-279. PubMed ID: 25522852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of Kupferschiefer black shale organic matter (Fore-Sudetic Monocline, Poland) by indigenous microorganisms.
    Matlakowska R; Sklodowska A
    Chemosphere; 2011 May; 83(9):1255-61. PubMed ID: 21444104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioweathering of Kupferschiefer black shale (Fore-Sudetic Monocline, SW Poland) by indigenous bacteria: implication for dissolution and precipitation of minerals in deep underground mine.
    Matlakowska R; Skłodowska A; Nejbert K
    FEMS Microbiol Ecol; 2012 Jul; 81(1):99-110. PubMed ID: 22329644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotransformation of copper from Kupferschiefer black shale (Fore-Sudetic Monocline, Poland) by yeast Rhodotorula mucilaginosa LM9.
    Rajpert L; Skłodowska A; Matlakowska R
    Chemosphere; 2013 May; 91(9):1257-65. PubMed ID: 23490182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotransformation of organic-rich copper-bearing black shale by indigenous microorganisms isolated from lubin copper mine (Poland).
    Matlakowska R; Narkiewicz W; Sklodowska A
    Environ Sci Technol; 2010 Apr; 44(7):2433-40. PubMed ID: 20210339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of factors responsible for the bioweathering of copper minerals from organic-rich copper-bearing Kupferschiefer black shale.
    Włodarczyk A; Szymańska A; Skłodowska A; Matlakowska R
    Chemosphere; 2016 Apr; 148():416-25. PubMed ID: 26835647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial weathering of fossil organic matter and organic carbon mobilization from subterrestrial Kupferschiefer black shale: long-term laboratory studies.
    Stasiuk R; Włodarczyk A; Karcz P; Janas M; Skłodowska A; Matlakowska R
    Environ Microbiol Rep; 2017 Aug; 9(4):459-466. PubMed ID: 28618204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The culturable bacteria isolated from organic-rich black shale potentially useful in biometallurgical procedures.
    Matlakowska R; Sklodowska A
    J Appl Microbiol; 2009 Sep; 107(3):858-66. PubMed ID: 19320944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacteria, hypertolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution.
    Drewniak L; Styczek A; Majder-Lopatka M; Sklodowska A
    Environ Pollut; 2008 Dec; 156(3):1069-74. PubMed ID: 18550235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis of Tetrapyrrole Cofactors by Bacterial Community Inhabiting Porphyrine-Containing Shale Rock (Fore-Sudetic Monocline).
    Stasiuk R; Krucoń T; Matlakowska R
    Molecules; 2021 Nov; 26(21):. PubMed ID: 34771152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postdiagenetic Changes in Kerogen Properties and Type by Bacterial Oxidation and Dehydrogenation.
    Wilamowska A; Koblowska M; Matlakowska R
    Molecules; 2022 Apr; 27(8):. PubMed ID: 35458606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postdiagenetic Bacterial Transformation of Nickel and Vanadyl Sedimentary Porphyrins of Organic-Rich Shale Rock (Fore-Sudetic Monocline, Poland).
    Stasiuk R; Matlakowska R
    Front Microbiol; 2021; 12():772007. PubMed ID: 34917054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seawater-induced mobilization of trace metals from mackinawite-rich estuarine sediments.
    Wong VN; Johnston SG; Burton ED; Bush RT; Sullivan LA; Slavich PG
    Water Res; 2013 Feb; 47(2):821-32. PubMed ID: 23199454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trace elements in agroecosystems and impacts on the environment.
    He ZL; Yang XE; Stoffella PJ
    J Trace Elem Med Biol; 2005; 19(2-3):125-40. PubMed ID: 16325528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Millimeter scale variations in the isotopic composition of vein sulphide minerals in the Kupferschiefer deposits, Lubin area, SW Poland.
    Krouse HR; Parafiniuk J; Nowak J; Halas S
    Isotopes Environ Health Stud; 2006 Dec; 42(4):327-33. PubMed ID: 17090485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Migration and enrichment of arsenic in the rock-soil-crop plant system in areas covered with black shale, Korea.
    Yi JM; Chon HT; Park M
    ScientificWorldJournal; 2003 Apr; 3():194-8. PubMed ID: 12806106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Siderophore production by actinobacteria.
    Wang W; Qiu Z; Tan H; Cao L
    Biometals; 2014 Aug; 27(4):623-31. PubMed ID: 24770987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Interaction of clay minerals with microorganisms: a review of experimental data].
    Naĭmark EB; Eroshchev-Shak VA; Chizhikova NP; Kompantseva EI
    Zh Obshch Biol; 2009; 70(2):155-67. PubMed ID: 19425352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxic trace element assessment for soils/sediments deposited during Hurricanes Katrina and Rita from southern Louisiana, USA: a sequential extraction analysis.
    Shi H; Witt EC; Shu S; Su T; Wang J; Adams C
    Environ Toxicol Chem; 2010 Jul; 29(7):1419-28. PubMed ID: 20821589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of neutralized industrial residue to stabilize trace elements (Cu, Cd, Zn, As, Mo, and Cr) in marine dredged sediment from South-East of France.
    Taneez M; Marmier N; Hurel C
    Chemosphere; 2016 May; 150():116-122. PubMed ID: 26894678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.