These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 25522854)

  • 1. Application of immobilized TiO2 photocatalysis to improve the inactivation of Heterosigma akashiwo in ballast water by intense pulsed light.
    Feng D; Xu S; Liu G
    Chemosphere; 2015 Apr; 125():102-7. PubMed ID: 25522854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation of microalgae in ballast water with pulse intense light treatment.
    Feng D; Shi J; Sun D
    Mar Pollut Bull; 2015 Jan; 90(1-2):299-303. PubMed ID: 25440896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of Heterosigma akashiwo in ballast water by circular orifice plate-generated hydrodynamic cavitation.
    Feng D; Zhao J; Liu T
    Environ Technol; 2016; 37(7):837-46. PubMed ID: 26370563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High efficiency inactivation of microalgae in ballast water by a new proposed dual-wave UV-photocatalysis system (UVA/UVC-TiO
    Lu Z; Zhang K; Liu X; Shi Y
    Environ Sci Pollut Res Int; 2019 Mar; 26(8):7785-7792. PubMed ID: 30673945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of UV/Ag-TiO2/O3 advanced oxidation on unicellular green alga Dunaliella salina: implications for removal of invasive species from ballast water.
    Wu D; You H; Du J; Chen C; Jin D
    J Environ Sci (China); 2011; 23(3):513-9. PubMed ID: 21520822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UV-based technologies for marine water disinfection and the application to ballast water: Does salinity interfere with disinfection processes?
    Moreno-Andrés J; Romero-Martínez L; Acevedo-Merino A; Nebot E
    Sci Total Environ; 2017 Mar; 581-582():144-152. PubMed ID: 28011021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Background irradiated photocatalysis of TiO2 thin films].
    Cen JW; Li XJ; Liang YY; He MX; Zheng SJ; Feng MZ
    Huan Jing Ke Xue; 2005 May; 26(3):135-40. PubMed ID: 16124486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation of algal blooms in eutrophic water of drinking water supplies with the photocatalysis of TiO2 thin film on hollow glass beads.
    Kim SC; Lee DK
    Water Sci Technol; 2005; 52(9):145-52. PubMed ID: 16445183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of photocatalytic reactors using immobilized TiO2 film for the degradation of phenol and methylene blue dye present in water stream.
    Ling CM; Mohamed AR; Bhatia S
    Chemosphere; 2004 Nov; 57(7):547-54. PubMed ID: 15488916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photocatalytic activity of hydrogenated TiO2.
    Leshuk T; Parviz R; Everett P; Krishnakumar H; Varin RA; Gu F
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):1892-5. PubMed ID: 23465766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photocatalytic degradation of phenol using Ag core-TiO
    Shet A; Shetty K V
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20055-20064. PubMed ID: 26564193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TiO2 nanoparticles: low-temperature hydrothermal synthesis in ionic liquids/water and the photocatalytic degradation for o-nitrophenol.
    Dai J; He R; Yuan Y; Wang W; Fanga D
    Environ Technol; 2014; 35(1-4):203-8. PubMed ID: 24600858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics and mechanism of TNT degradation in TiO2 photocatalysis.
    Son HS; Lee SJ; Cho IH; Zoh KD
    Chemosphere; 2004 Oct; 57(4):309-17. PubMed ID: 15312729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of Amphidinium sp. in ballast waters using UV/Ag-TiO2+O3 advanced oxidation treatment.
    Wu D; You H; Zhang R; Chen C; Lee DJ
    Bioresour Technol; 2011 Nov; 102(21):9838-42. PubMed ID: 21890347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concomitant inactivation of Acanthamoeba spp. and Escherichia coli using suspended and immobilized TiO
    Adán C; Magnet A; Fenoy S; Pablos C; Del Águila C; Marugán J
    Water Res; 2018 Nov; 144():512-521. PubMed ID: 30081334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of the roles of reactive oxygen species in the UV and visible light photocatalytic degradation of cyanotoxins and water taste and odor compounds using C-TiO2.
    Fotiou T; Triantis TM; Kaloudis T; O'Shea KE; Dionysiou DD; Hiskia A
    Water Res; 2016 Mar; 90():52-61. PubMed ID: 26724439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of parathion and the reduction of acute toxicity in TiO2 photocatalysis.
    Zoh KD; Kim TS; Kim JG; Choi KH
    Water Sci Technol; 2005; 52(8):45-52. PubMed ID: 16312950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of paraquat dissolved in a photoreactor with TiO2 immobilized on the glass-tubes of UV lamps.
    Lee JC; Kim MS; Kim BW
    Water Res; 2002 Apr; 36(7):1776-82. PubMed ID: 12044077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the photocatalytic reaction kinetics in a TiO
    Liu AL; Li ZQ; Wu ZQ; Xia XH
    Talanta; 2018 May; 182():544-548. PubMed ID: 29501190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fulvic acid degradation using nanoparticle TiO2 in a submerged membrane photocatalysis reactor.
    Fu JF; Ji M; An DN
    J Environ Sci (China); 2005; 17(6):942-5. PubMed ID: 16465883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.