BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 25523104)

  • 61. Serotonin innervation of basal ganglia in monkeys and humans.
    Parent M; Wallman MJ; Gagnon D; Parent A
    J Chem Neuroanat; 2011 Jul; 41(4):256-65. PubMed ID: 21664455
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Synaptic and extrasynaptic GABA-A and GABA-B receptors in the globus pallidus: an electron microscopic immunogold analysis in monkeys.
    Charara A; Pare JF; Levey AI; Smith Y
    Neuroscience; 2005; 131(4):917-33. PubMed ID: 15749345
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Immunohistochemical study of choline acetyltransferase-immunoreactive processes and cells innervating the pontomedullary reticular formation in the rat.
    Jones BE
    J Comp Neurol; 1990 May; 295(3):485-514. PubMed ID: 2351765
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Nigral and pallidal inputs to functionally segregated thalamostriatal neurons in the centromedian/parafascicular intralaminar nuclear complex in monkey.
    Sidibé M; Paré JF; Smith Y
    J Comp Neurol; 2002 Jun; 447(3):286-99. PubMed ID: 11984822
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Types of synapses in the pallidum and their differential degeneration following lesions of pallidal afferents in squirrel monkey (Saimiri sciureus).
    Chung YW; Hassler RG
    Adv Neurol; 1984; 40():21-7. PubMed ID: 6695596
    [No Abstract]   [Full Text] [Related]  

  • 66. Immunocytochemical localization of choline acetyltransferase in rat cerebral cortex: a study of cholinergic neurons and synapses.
    Houser CR; Crawford GD; Salvaterra PM; Vaughn JE
    J Comp Neurol; 1985 Apr; 234(1):17-34. PubMed ID: 3980786
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Three-Dimensional Spatial Analyses of Cholinergic Neuronal Distributions Across The Mouse Septum, Nucleus Basalis, Globus Pallidus, Nucleus Accumbens, and Caudate-Putamen.
    Carrasco A; Oorschot DE; Barzaghi P; Wickens JR
    Neuroinformatics; 2022 Oct; 20(4):1121-1136. PubMed ID: 35792992
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Ultrastructural characterization of the acetylcholine innervation in adult rat neostriatum.
    Contant C; Umbriaco D; Garcia S; Watkins KC; Descarries L
    Neuroscience; 1996 Apr; 71(4):937-47. PubMed ID: 8684624
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Field evoked potentials in the globus pallidus of non-human primates.
    Prescott IA; Marino RA; Levy R
    Neurosci Res; 2017 Jul; 120():18-27. PubMed ID: 28159649
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effects of aging on the cholinergic innervation of the rat ventral tegmental area: A stereological study.
    Pereira PA; Coelho J; Silva A; Madeira MD
    Exp Gerontol; 2021 Jun; 148():111298. PubMed ID: 33652122
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Identification of the pallidal and peripallidal cells projecting to the habenula in monkey.
    Parent A
    Neurosci Lett; 1979 Dec; 15(2-3):159-64. PubMed ID: 119192
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Basal Forebrain and Brainstem Cholinergic Neurons Differentially Impact Amygdala Circuits and Learning-Related Behavior.
    Aitta-Aho T; Hay YA; Phillips BU; Saksida LM; Bussey TJ; Paulsen O; Apergis-Schoute J
    Curr Biol; 2018 Aug; 28(16):2557-2569.e4. PubMed ID: 30100338
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Nuclear organization and morphology of cholinergic neurons in the brain of the rock cavy (Kerodon rupestris) (Wied, 1820).
    Resende NR; Soares Filho PL; Peixoto PPA; Silva AM; Silva SF; Soares JG; do Nascimento ES; Cavalcante JC; Cavalcante JS; Costa MSMO
    J Chem Neuroanat; 2018 Dec; 94():63-74. PubMed ID: 30293055
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Calretinin labels a specific neuronal subpopulation in primate globus pallidus.
    Fortin M; Parent A
    Neuroreport; 1994 Oct; 5(16):2097-100. PubMed ID: 7865754
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Npas1
    Abecassis ZA; Berceau BL; Win PH; García D; Xenias HS; Cui Q; Pamukcu A; Cherian S; Hernández VM; Chon U; Lim BK; Kim Y; Justice NJ; Awatramani R; Hooks BM; Gerfen CR; Boca SM; Chan CS
    J Neurosci; 2020 Jan; 40(4):743-768. PubMed ID: 31811030
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Light microscopic evidence of striatal input to intrapallidal neurons of cholinergic cell group Ch4 in the rat: a study employing the anterograde tracer Phaseolus vulgaris leucoagglutinin (PHA-L).
    Grove EA; Domesick VB; Nauta WJ
    Brain Res; 1986 Mar; 367(1-2):379-84. PubMed ID: 3697714
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Tyrosine hydroxylase-immunoreactive elements in the human globus pallidus and subthalamic nucleus.
    Hedreen JC
    J Comp Neurol; 1999 Jul; 409(3):400-10. PubMed ID: 10379826
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A case of adult onset pure pallidal degeneration. II. Analysis of neurotransmitter markers, with special reference to the termination of pallidothalamic tract in human brain.
    Aizawa H; Kwak S; Shimizu T; Mannen T; Shibasaki H
    J Neurol Sci; 1991 Mar; 102(1):83-91. PubMed ID: 1677416
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Output architecture of the primate putamen.
    Flaherty AW; Graybiel AM
    J Neurosci; 1993 Aug; 13(8):3222-37. PubMed ID: 7688037
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The expression of neurokinin-1 receptor at striatal and pallidal levels in normal human brain.
    Mounir S; Parent A
    Neurosci Res; 2002 Sep; 44(1):71-81. PubMed ID: 12204295
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.