These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 25523176)

  • 1. A comprehensive transcriptome analysis of silique development and dehiscence in Arabidopsis and Brassica integrating genotypic, interspecies and developmental comparisons.
    Jaradat MR; Ruegger M; Bowling A; Butler H; Cutler AJ
    GM Crops Food; 2014; 5(4):302-20. PubMed ID: 25523176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BnLATE, a Cys2/His2-Type Zinc-Finger Protein, Enhances Silique Shattering Resistance by Negatively Regulating Lignin Accumulation in the Silique Walls of Brassica napus.
    Tao Z; Huang Y; Zhang L; Wang X; Liu G; Wang H
    PLoS One; 2017; 12(1):e0168046. PubMed ID: 28081140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. miR319-Regulated TCP3 Modulates Silique Development Associated with Seed Shattering in Brassicaceae.
    Cao B; Wang H; Bai J; Wang X; Li X; Zhang Y; Yang S; He Y; Yu X
    Cells; 2022 Oct; 11(19):. PubMed ID: 36231057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing the role of endocarp
    Nichol JB; Samuel MA
    Plant Signal Behav; 2024 Dec; 19(1):2384243. PubMed ID: 39074045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome analysis of various flower and silique development stages indicates a set of class III peroxidase genes potentially involved in pod shattering in Arabidopsis thaliana.
    Cosio C; Dunand C
    BMC Genomics; 2010 Sep; 11():528. PubMed ID: 20920253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NAC transcription factors NST1 and NST3 regulate pod shattering in a partially redundant manner by promoting secondary wall formation after the establishment of tissue identity.
    Mitsuda N; Ohme-Takagi M
    Plant J; 2008 Dec; 56(5):768-78. PubMed ID: 18657234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of INDEHISCENT point mutations on silique shatter resistance in oilseed rape (Brassica napus).
    Braatz J; Harloff HJ; Emrani N; Elisha C; Heepe L; Gorb SN; Jung C
    Theor Appl Genet; 2018 Apr; 131(4):959-971. PubMed ID: 29340752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Down-regulation of MANNANASE7 gene in Brassica napus L. enhances silique dehiscence-resistance.
    Li YL; Yu YK; Zhu KM; Ding LN; Wang Z; Yang YH; Cao J; Xu LZ; Li YM; Tan XL
    Plant Cell Rep; 2021 Feb; 40(2):361-374. PubMed ID: 33392730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of a dehiscence zone endo-polygalacturonase in oilseed rape (Brassica napus) and Arabidopsis thaliana: evidence for roles in cell separation in dehiscence and abscission zones, and in stylar tissues during pollen tube growth.
    Sander L; Child R; Ulvskov P; Albrechtsen M; Borkhardt B
    Plant Mol Biol; 2001 Jul; 46(4):469-79. PubMed ID: 11485203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pod shatter-resistant Brassica fruit produced by ectopic expression of the FRUITFULL gene.
    Østergaard L; Kempin SA; Bies D; Klee HJ; Yanofsky MF
    Plant Biotechnol J; 2006 Jan; 4(1):45-51. PubMed ID: 17177784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of
    Zaman QU; Wen C; Yuqin S; Mengyu H; Desheng M; Jacqueline B; Baohong Z; Chao L; Qiong H
    CRISPR J; 2021 Jun; 4(3):360-370. PubMed ID: 34152222
    [No Abstract]   [Full Text] [Related]  

  • 12. Genome-wide identification, phylogeny, and expression profiling analysis of shattering genes in rapeseed and mustard plants.
    Afridi M; Ahmad K; Malik SS; Rehman N; Yasin M; Khan SM; Hussain A; Khan MR
    J Genet Eng Biotechnol; 2022 Aug; 20(1):124. PubMed ID: 35980545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide delineation of natural variation for pod shatter resistance in Brassica napus.
    Raman H; Raman R; Kilian A; Detering F; Carling J; Coombes N; Diffey S; Kadkol G; Edwards D; McCully M; Ruperao P; Parkin IA; Batley J; Luckett DJ; Wratten N
    PLoS One; 2014; 9(7):e101673. PubMed ID: 25006804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and QUARTET2 are Polygalacturonases required for cell separation during reproductive development in Arabidopsis.
    Ogawa M; Kay P; Wilson S; Swain SM
    Plant Cell; 2009 Jan; 21(1):216-33. PubMed ID: 19168715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CELLULASE6 and MANNANASE7 Affect Cell Differentiation and Silique Dehiscence.
    He H; Bai M; Tong P; Hu Y; Yang M; Wu H
    Plant Physiol; 2018 Mar; 176(3):2186-2201. PubMed ID: 29348141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomic basis of functional difference and coordination between seeds and the silique wall of Brassica napus during the seed-filling stage.
    Liu H; Yang Q; Fan C; Zhao X; Wang X; Zhou Y
    Plant Sci; 2015 Apr; 233():186-199. PubMed ID: 25711826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A molecular and structural characterization of senescing Arabidopsis siliques and comparison of transcriptional profiles with senescing petals and leaves.
    Wagstaff C; Yang TJ; Stead AD; Buchanan-Wollaston V; Roberts JA
    Plant J; 2009 Feb; 57(4):690-705. PubMed ID: 18980641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel quantitative trait loci from an interspecific
    Raman H; Raman R; Sharma N; Cui X; McVittie B; Qiu Y; Zhang Y; Hu Q; Liu S; Gororo N
    Front Plant Sci; 2023; 14():1233996. PubMed ID: 37736615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 influences flowering time, lateral branching, oil quality, and seed yield in Brassica juncea cv. Varuna.
    Tyagi S; Sri T; Singh A; Mayee P; Shivaraj SM; Sharma P; Singh A
    Funct Integr Genomics; 2019 Jan; 19(1):43-60. PubMed ID: 29943206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brassicaceae INDEHISCENT genes specify valve margin cell fate and repress replum formation.
    Girin T; Stephenson P; Goldsack CMP; Kempin SA; Perez A; Pires N; Sparrow PA; Wood TA; Yanofsky MF; Østergaard L
    Plant J; 2010 Jul; 63(2):329-338. PubMed ID: 20444234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.