These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 25523616)
1. Quantification of global cerebral atrophy in multiple sclerosis from 3T MRI using SPM: the role of misclassification errors. Dell'Oglio E; Ceccarelli A; Glanz BI; Healy BC; Tauhid S; Arora A; Saravanan N; Bruha MJ; Vartanian AV; Dupuy SL; Benedict RHB; Bakshi R; Neema M J Neuroimaging; 2015; 25(2):191-199. PubMed ID: 25523616 [TBL] [Abstract][Full Text] [Related]
2. Whole-brain atrophy assessed by proportional- versus registration-based pipelines from 3T MRI in multiple sclerosis. Hemond CC; Chu R; Tummala S; Tauhid S; Healy BC; Bakshi R Brain Behav; 2018 Aug; 8(8):e01068. PubMed ID: 30019857 [TBL] [Abstract][Full Text] [Related]
3. Automated segmentation of cerebral deep gray matter from MRI scans: effect of field strength on sensitivity and reliability. Chu R; Hurwitz S; Tauhid S; Bakshi R BMC Neurol; 2017 Sep; 17(1):172. PubMed ID: 28874119 [TBL] [Abstract][Full Text] [Related]
4. HLA-DRB1*1501, -DQB1*0301, -DQB1*0302, -DQB1*0602, and -DQB1*0603 alleles are associated with more severe disease outcome on MRI in patients with multiple sclerosis. Zivadinov R; Uxa L; Bratina A; Bosco A; Srinivasaraghavan B; Minagar A; Ukmar M; Benedetto Sy; Zorzon M Int Rev Neurobiol; 2007; 79():521-35. PubMed ID: 17531857 [TBL] [Abstract][Full Text] [Related]
6. Whole brain and deep gray matter atrophy detection over 5 years with 3T MRI in multiple sclerosis using a variety of automated segmentation pipelines. Chu R; Kim G; Tauhid S; Khalid F; Healy BC; Bakshi R PLoS One; 2018; 13(11):e0206939. PubMed ID: 30408094 [TBL] [Abstract][Full Text] [Related]
7. Quantitative texture analysis of brain white matter lesions derived from T2-weighted MR images in MS patients with clinically isolated syndrome. Loizou CP; Petroudi S; Seimenis I; Pantziaris M; Pattichis CS J Neuroradiol; 2015 Apr; 42(2):99-114. PubMed ID: 24970463 [TBL] [Abstract][Full Text] [Related]
8. Subcortical gray matter segmentation and voxel-based analysis using transverse relaxation and quantitative susceptibility mapping with application to multiple sclerosis. Cobzas D; Sun H; Walsh AJ; Lebel RM; Blevins G; Wilman AH J Magn Reson Imaging; 2015 Dec; 42(6):1601-10. PubMed ID: 25980643 [TBL] [Abstract][Full Text] [Related]
10. The relationship between whole brain volume and disability in multiple sclerosis: a comparison of normalized gray vs. white matter with misclassification correction. Sanfilipo MP; Benedict RH; Sharma J; Weinstock-Guttman B; Bakshi R Neuroimage; 2005 Jul; 26(4):1068-77. PubMed ID: 15961046 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of automated techniques for the quantification of grey matter atrophy in patients with multiple sclerosis. Derakhshan M; Caramanos Z; Giacomini PS; Narayanan S; Maranzano J; Francis SJ; Arnold DL; Collins DL Neuroimage; 2010 Oct; 52(4):1261-7. PubMed ID: 20483380 [TBL] [Abstract][Full Text] [Related]
12. Segmentation of brain magnetic resonance images for measurement of gray matter atrophy in multiple sclerosis patients. Nakamura K; Fisher E Neuroimage; 2009 Feb; 44(3):769-76. PubMed ID: 19007895 [TBL] [Abstract][Full Text] [Related]
13. Comparison of grey matter atrophy between patients with neuromyelitis optica and multiple sclerosis: a voxel-based morphometry study. Duan Y; Liu Y; Liang P; Jia X; Yu C; Qin W; Sun H; Liao Z; Ye J; Li K Eur J Radiol; 2012 Feb; 81(2):e110-4. PubMed ID: 21316170 [TBL] [Abstract][Full Text] [Related]
14. Exploring the effect of glatiramer acetate on cerebral gray matter atrophy in multiple sclerosis. AbdelRazek MA; Tummala S; Khalid F; Tauhid S; Jalkh Y; Khalil S; Hurwitz S; Zurawski J; Bakshi R J Neurol Sci; 2023 Jan; 444():120501. PubMed ID: 36481574 [TBL] [Abstract][Full Text] [Related]
15. Automated determination of brain parenchymal fraction in multiple sclerosis. Vågberg M; Lindqvist T; Ambarki K; Warntjes JB; Sundström P; Birgander R; Svenningsson A AJNR Am J Neuroradiol; 2013 Mar; 34(3):498-504. PubMed ID: 22976234 [TBL] [Abstract][Full Text] [Related]
16. Accurate GM atrophy quantification in MS using lesion-filling with co-registered 2D lesion masks. Popescu V; Ran NC; Barkhof F; Chard DT; Wheeler-Kingshott CA; Vrenken H Neuroimage Clin; 2014; 4():366-73. PubMed ID: 24567908 [TBL] [Abstract][Full Text] [Related]
17. Corpus callosum atrophy correlates with gray matter atrophy in patients with multiple sclerosis. Klawiter EC; Ceccarelli A; Arora A; Jackson J; Bakshi S; Kim G; Miller J; Tauhid S; von Gizycki C; Bakshi R; Neema M J Neuroimaging; 2015; 25(1):62-7. PubMed ID: 24816394 [TBL] [Abstract][Full Text] [Related]
18. Lesion filling effect in regional brain volume estimations: a study in multiple sclerosis patients with low lesion load. Pareto D; Sastre-Garriga J; Aymerich FX; Auger C; Tintoré M; Montalban X; Rovira A Neuroradiology; 2016 May; 58(5):467-74. PubMed ID: 26847633 [TBL] [Abstract][Full Text] [Related]
19. Quantification of perfusion and permeability in multiple sclerosis: dynamic contrast-enhanced MRI in 3D at 3T. Ingrisch M; Sourbron S; Morhard D; Ertl-Wagner B; Kümpfel T; Hohlfeld R; Reiser M; Glaser C Invest Radiol; 2012 Apr; 47(4):252-8. PubMed ID: 22373532 [TBL] [Abstract][Full Text] [Related]
20. A semiautomated measure of whole-brain atrophy in multiple sclerosis. Bermel RA; Sharma J; Tjoa CW; Puli SR; Bakshi R J Neurol Sci; 2003 Apr; 208(1-2):57-65. PubMed ID: 12639726 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]