BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 25523935)

  • 1. Proteomics in the investigation of HIV-1 interactions with host proteins.
    Li M
    Proteomics Clin Appl; 2015 Feb; 9(1-2):221-34. PubMed ID: 25523935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic Characterization of Exosomes from HIV-1-Infected Cells.
    Li M; Ramratnam B
    Methods Mol Biol; 2016; 1354():311-26. PubMed ID: 26714721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative proteomics by SWATH-MS reveals altered expression of nucleic acid binding and regulatory proteins in HIV-1-infected macrophages.
    Haverland NA; Fox HS; Ciborowski P
    J Proteome Res; 2014 Apr; 13(4):2109-19. PubMed ID: 24564501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomics, biomarkers, and HIV-1: A current perspective.
    Donnelly MR; Ciborowski P
    Proteomics Clin Appl; 2016 Feb; 10(2):110-25. PubMed ID: 26033875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving HIV proteome annotation: new features of BioAfrica HIV Proteomics Resource.
    Druce M; Hulo C; Masson P; Sommer P; Xenarios I; Le Mercier P; De Oliveira T
    Database (Oxford); 2016; 2016():. PubMed ID: 27087306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioorthogonal mimetics of palmitoyl-CoA and myristoyl-CoA and their subsequent isolation by click chemistry and characterization by mass spectrometry reveal novel acylated host-proteins modified by HIV-1 infection.
    Colquhoun DR; Lyashkov AE; Ubaida Mohien C; Aquino VN; Bullock BT; Dinglasan RR; Agnew BJ; Graham DR
    Proteomics; 2015 Jun; 15(12):2066-77. PubMed ID: 25914232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HIV-1 Nef and host proteome analysis: Current perspective.
    Saxena R; Vekariya U; Tripathi R
    Life Sci; 2019 Feb; 219():322-328. PubMed ID: 30664855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HIV-host interactions: a map of viral perturbation of the host system.
    Pinney JW; Dickerson JE; Fu W; Sanders-Beer BE; Ptak RG; Robertson DL
    AIDS; 2009 Mar; 23(5):549-54. PubMed ID: 19262354
    [No Abstract]   [Full Text] [Related]  

  • 9. An integrated map of HIV-human protein complexes that facilitate viral infection.
    Emig-Agius D; Olivieri K; Pache L; Shih HL; Pustovalova O; Bessarabova M; Young JA; Chanda SK; Ideker T
    PLoS One; 2014; 9(5):e96687. PubMed ID: 24817247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of host response to Cryptococcus neoformans through quantitative proteomic analysis of cryptococcal meningitis co-infected with HIV.
    Selvan LD; Sreenivasamurthy SK; Kumar S; Yelamanchi SD; Madugundu AK; Anil AK; Renuse S; Nair BG; Gowda H; Mathur PP; Satishchandra P; Shankar SK; Mahadevan A; Keshava Prasad TS
    Mol Biosyst; 2015 Sep; 11(9):2529-40. PubMed ID: 26181685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteome analysis of the HIV-1 Gag interactome.
    Engeland CE; Brown NP; Börner K; Schümann M; Krause E; Kaderali L; Müller GA; Kräusslich HG
    Virology; 2014 Jul; 460-461():194-206. PubMed ID: 25010285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic profiling of HIV-infected T-cells by SWATH mass spectrometry.
    DeBoer J; Wojtkiewicz MS; Haverland N; Li Y; Harwood E; Leshen E; George JW; Ciborowski P; Belshan M
    Virology; 2018 Mar; 516():246-257. PubMed ID: 29425767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of HIV-1 auxiliary proteins in viral pathogenesis and host-pathogen interactions.
    Li L; Li HS; Pauza CD; Bukrinsky M; Zhao RY
    Cell Res; 2005; 15(11-12):923-34. PubMed ID: 16354571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic analysis of HIV-1 Gag interacting partners using proximity-dependent biotinylation.
    Le Sage V; Cinti A; Valiente-Echeverría F; Mouland AJ
    Virol J; 2015 Sep; 12():138. PubMed ID: 26362536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Host proteome research in HIV infection.
    Zhang L; Zhang X; Ma Q; Zhou H
    Genomics Proteomics Bioinformatics; 2010 Mar; 8(1):1-9. PubMed ID: 20451157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New Insights into the Disease Progression Control Mechanisms by Comparing Long-Term-Nonprogressors versus Normal-Progressors among HIV-1-Positive Patients Using an Ion Current-Based MS1 Proteomic Profiling.
    Shen X; Nair B; Mahajan SD; Jiang X; Li J; Shen S; Tu C; Hsiao CB; Schwartz SA; Qu J
    J Proteome Res; 2015 Dec; 14(12):5225-39. PubMed ID: 26484939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative phosphoproteomics reveals extensive cellular reprogramming during HIV-1 entry.
    Wojcechowskyj JA; Didigu CA; Lee JY; Parrish NF; Sinha R; Hahn BH; Bushman FD; Jensen ST; Seeholzer SH; Doms RW
    Cell Host Microbe; 2013 May; 13(5):613-623. PubMed ID: 23684312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative proteomic analyses of two reovirus T3D subtypes and comparison to T1L identifies multiple novel proteins in key cellular pathogenic pathways.
    Berard AR; Severini A; Coombs KM
    Proteomics; 2015 Jun; 15(12):2113-35. PubMed ID: 25900405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomics Profiling of Autologous Blood and Semen Exosomes from HIV-infected and Uninfected Individuals Reveals Compositional and Functional Variabilities.
    Kaddour H; Lyu Y; Welch JL; Paromov V; Mandape SN; Sakhare SS; Pandhare J; Stapleton JT; Pratap S; Dash C; Okeoma CM
    Mol Cell Proteomics; 2020 Jan; 19(1):78-100. PubMed ID: 31676584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ABPP and Host-Virus Interactions.
    Desrochers GF; Pezacki JP
    Curr Top Microbiol Immunol; 2019; 420():131-154. PubMed ID: 30244323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.