These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 25523978)

  • 1. Redesign of Indonesian-made osteosynthesis plates to enhance their mechanical behavior.
    Dewo P; van der Houwen EB; Suyitno ; Marius R; Magetsari R; Verkerke GJ
    J Mech Behav Biomed Mater; 2015 Feb; 42():274-81. PubMed ID: 25523978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical properties of Indonesian-made narrow dynamic compression plate.
    Dewo P; van der Houwen EB; Sharma PK; Magetsari R; Bor TC; Vargas-Llona LD; van Horn JR; Busscher HJ; Verkerke GJ
    J Mech Behav Biomed Mater; 2012 Sep; 13():93-101. PubMed ID: 22842280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effect of bending on shot peened and polished osteosynthesis plates].
    Starker M; Fröhling M; Hirsch T
    Biomed Tech (Berl); 1991 Mar; 36(3):56-9. PubMed ID: 2054460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Methods for increasing fatigue strength of osteosynthesis plates].
    Starker M; Starker P
    Z Orthop Ihre Grenzgeb; 1983; 121(2):142-5. PubMed ID: 6858318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Studies of explanted shot-peened osteosynthesis plates].
    Starker M; Ungethüm M; Zichner L
    Z Orthop Ihre Grenzgeb; 1986; 124(3):350-4. PubMed ID: 3751250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical comparison of proximal locking plates and blade plates for the treatment of comminuted subtrochanteric femoral fractures.
    Floyd JC; O'Toole RV; Stall A; Forward DP; Nabili M; Shillingburg D; Hsieh A; Nascone JW
    J Orthop Trauma; 2009 Oct; 23(9):628-33. PubMed ID: 19897983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue Limit of Custom 465 with Surface Strengthening Treatment.
    An G; Liu RJ; Yin GQ
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31935829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Experimental studies on "less rigid" polyacetal plates for fracture fixation (author's transl)].
    Kusunose K
    Nihon Seikeigeka Gakkai Zasshi; 1982 May; 56(5):399-414. PubMed ID: 7108319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical comparison of 4 different lateral plate constructs for distal fibula fractures.
    Eckel TT; Glisson RR; Anand P; Parekh SG
    Foot Ankle Int; 2013 Nov; 34(11):1588-95. PubMed ID: 23818460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of repeated cycles of sterilisation on the mechanical characteristics of titanium miniplates for osteosynthesis.
    Colella G; Tartaro G; Cannavale R; Lanza A; Marulo F
    Br J Oral Maxillofac Surg; 2008 Sep; 46(6):449-54. PubMed ID: 18336967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical comparison of double-row locking plates versus single- and double-row non-locking plates in a comminuted metacarpal fracture model.
    Gajendran VK; Szabo RM; Myo GK; Curtiss SB
    J Hand Surg Am; 2009 Dec; 34(10):1851-8. PubMed ID: 19897325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can locking screws allow smaller, low-profile plates to achieve comparable stability to larger, standard plates?
    Garrigues GE; Glisson RR; Garrigues NW; Richard MJ; Ruch DS
    J Orthop Trauma; 2011 Jun; 25(6):347-54. PubMed ID: 21577070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical comparison of novel bioabsorbable plates with titanium plates and small-series clinical comparisons for metacarpal fractures.
    Sakai A; Oshige T; Zenke Y; Menuki K; Murai T; Nakamura T
    J Bone Joint Surg Am; 2012 Sep; 94(17):1597-604. PubMed ID: 22992850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical characteristics of locking and compression plate constructs applied dorsally to distal radius fractures.
    Boswell S; McIff TE; Trease CA; Toby EB
    J Hand Surg Am; 2007; 32(5):623-9. PubMed ID: 17481999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fixation properties of a biodegradable "free-form" osteosynthesis plate.
    Väänänen P; Nurmi JT; Nuutinen JP; Jakonen S; Happonen H; Jank S
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2008 Oct; 106(4):477-82. PubMed ID: 18554937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical and biological aspects of defect treatment in fractures using helical plates.
    Perren SM; Regazzoni P; Fernandez AA
    Acta Chir Orthop Traumatol Cech; 2014; 81(4):267-71. PubMed ID: 25137496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the mechanical properties of locking plates with and without screw hole inserts.
    Eichinger JK; Herzog JP; Arrington ED
    Orthopedics; 2011 Jan; 34(1):19. PubMed ID: 21210620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pullout strength of a biodegradable free form osteosynthesis plate.
    Jank S; Väänänen P; Kloss FR; Nurmi JT; Nuutinen JP; Jakonen S; Happonen H
    J Craniomaxillofac Surg; 2010 Oct; 38(7):517-21. PubMed ID: 20378367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured laminar tungsten alloy with improved ductility by surface mechanical attrition treatment.
    Guo HY; Xia M; Chan LC; Wang K; Zhang XX; Yan QZ; He MC; Lu J; Ge CC
    Sci Rep; 2017 May; 7(1):1351. PubMed ID: 28465533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of surface mechanical attrition treatment on biodegradable Mg-1Ca alloy.
    Li N; Li YD; Li YX; Wu YH; Zheng YF; Han Y
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():314-21. PubMed ID: 24411383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.