These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 25524112)

  • 1. Design, construction, and characterization of a set of biosensors for aromatic compounds.
    Xue H; Shi H; Yu Z; He S; Liu S; Hou Y; Pan X; Wang H; Zheng P; Cui C; Viets H; Liang J; Zhang Y; Chen S; Zhang HM; Ouyang Q
    ACS Synth Biol; 2014 Dec; 3(12):1011-4. PubMed ID: 25524112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring aromatic hydrocarbons by whole cell electrochemical biosensors.
    Paitan Y; Biran I; Shechter N; Biran D; Rishpon J; Ron EZ
    Anal Biochem; 2004 Dec; 335(2):175-83. PubMed ID: 15556555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering whole-cell biosensors with no antibiotic markers for monitoring aromatic compounds in the environment.
    de Las Heras A; de Lorenzo V
    Methods Mol Biol; 2012; 834():261-81. PubMed ID: 22144365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of transformant reporters carrying fused genes using pcbC promoter of Pseudomonas sp DJ-12 for detection of aromatic pollutants.
    Park SH; Lee K; Chae JC; Kim CK
    Environ Monit Assess; 2004 Mar; 92(1-3):241-51. PubMed ID: 15038547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction and comparison of fluorescence and bioluminescence bacterial biosensors for the detection of bioavailable toluene and related compounds.
    Li YF; Li FY; Ho CL; Liao VH
    Environ Pollut; 2008 Mar; 152(1):123-9. PubMed ID: 17583401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction and comparison of Escherichia coli whole-cell biosensors capable of detecting aromatic compounds.
    Kim MN; Park HH; Lim WK; Shin HJ
    J Microbiol Methods; 2005 Feb; 60(2):235-45. PubMed ID: 15590098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of fluorescent protein-based biosensing strains: A new tool for the detection of aromatic hydrocarbon pollutants in the environment.
    Patel R; Zaveri P; Mukherjee A; Agarwal PK; More P; Munshi NS
    Ecotoxicol Environ Saf; 2019 Oct; 182():109450. PubMed ID: 31349104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Whole-cell bacterial biosensors for the detection of aromatic hydrocarbons and their chlorinated derivatives].
    Plotnikova EG; Shumkova ES; Shumkov MS
    Prikl Biokhim Mikrobiol; 2016; 52(4):353-64. PubMed ID: 29512966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure prediction and molecular docking studies of aromatic hydrocarbon sensing proteins TbuT, HbpR and PhnR to detect priority pollutants.
    Patel R; Chudasama R; Solanki R; Patel P; Parmar K; Munshi NS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(2):126-141. PubMed ID: 31566066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial oxygenases: in vivo enzyme biosensors for organic pollutants.
    Tizzard AC; Lloyd-Jones G
    Biosens Bioelectron; 2007 May; 22(11):2400-7. PubMed ID: 17023153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of an alkane-inducible biosensor for increased responsiveness to short-chain alkanes.
    Reed B; Blazeck J; Alper H
    J Biotechnol; 2012 Apr; 158(3):75-9. PubMed ID: 22326628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Biosensors for detecting organic compounds. II. Sensors for carbohydrates, aromatic, heterocyclic and other organic compounds].
    Sorochinskiĭ VV; Kurganov BI
    Prikl Biokhim Mikrobiol; 1998; 34(1):22-42. PubMed ID: 9566290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stress responsive bacteria: biosensors as environmental monitors.
    Cheng Vollmer A; Van Dyk TK
    Adv Microb Physiol; 2004; 49():131-74. PubMed ID: 15518830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling bacterial physiology for optimal expression of gene reporter constructs.
    Marqués S; Aranda-Olmedo I; Ramos JL
    Curr Opin Biotechnol; 2006 Feb; 17(1):50-6. PubMed ID: 16359853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exposing culprit organic pollutants: a review.
    Keane A; Phoenix P; Ghoshal S; Lau PC
    J Microbiol Methods; 2002 Apr; 49(2):103-19. PubMed ID: 11830297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional characterization of Gram-negative bacteria from different genera as multiplex cadmium biosensors.
    Bereza-Malcolm L; Aracic S; Kannan R; Mann G; Franks AE
    Biosens Bioelectron; 2017 Aug; 94():380-387. PubMed ID: 28319906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applications of whole-cell bacterial sensors in biotechnology and environmental science.
    Yagi K
    Appl Microbiol Biotechnol; 2007 Jan; 73(6):1251-8. PubMed ID: 17111136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Making bio-sense of toxicity: new developments in whole-cell biosensors.
    Sørensen SJ; Burmølle M; Hansen LH
    Curr Opin Biotechnol; 2006 Feb; 17(1):11-6. PubMed ID: 16376540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental degradation of polluting aromatic and aliphatic hydrocarbons: a case study.
    Osuji LC; Ozioma A
    Chem Biodivers; 2007 Mar; 4(3):424-30. PubMed ID: 17372944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing a New Fluorescent Protein for a Low Limit of Detection Sensing in the Cell-Free System.
    Copeland CE; Kim J; Copeland PL; Heitmeier CJ; Kwon YC
    ACS Synth Biol; 2022 Aug; 11(8):2800-2810. PubMed ID: 35850511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.