These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 25524228)

  • 1. Observation of decoherence in a carbon nanotube mechanical resonator.
    Schneider BH; Singh V; Venstra WJ; Meerwaldt HB; Steele GA
    Nat Commun; 2014 Dec; 5():5819. PubMed ID: 25524228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Symmetry breaking in a mechanical resonator made from a carbon nanotube.
    Eichler A; Moser J; Dykman MI; Bachtold A
    Nat Commun; 2013; 4():2843. PubMed ID: 24270088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong coupling between single-electron tunneling and nanomechanical motion.
    Steele GA; Hüttel AK; Witkamp B; Poot M; Meerwaldt HB; Kouwenhoven LP; van der Zant HS
    Science; 2009 Aug; 325(5944):1103-7. PubMed ID: 19628816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interplay of driving and frequency noise in the spectra of vibrational systems.
    Zhang Y; Moser J; Güttinger J; Bachtold A; Dykman MI
    Phys Rev Lett; 2014 Dec; 113(25):255502. PubMed ID: 25554894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mode coupling bi-stability and spectral broadening in buckled carbon nanotube mechanical resonators.
    Rechnitz S; Tabachnik T; Shlafman M; Shlafman S; Yaish YE
    Nat Commun; 2022 Oct; 13(1):5900. PubMed ID: 36202803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-Time Measurement of Nanotube Resonator Fluctuations in an Electron Microscope.
    Tsioutsios I; Tavernarakis A; Osmond J; Verlot P; Bachtold A
    Nano Lett; 2017 Mar; 17(3):1748-1755. PubMed ID: 28186773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling carbon nanotube mechanics to a superconducting circuit.
    Schneider BH; Etaki S; van der Zant HS; Steele GA
    Sci Rep; 2012; 2():599. PubMed ID: 22953042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling mechanics to charge transport in carbon nanotube mechanical resonators.
    Lassagne B; Tarakanov Y; Kinaret J; Garcia-Sanchez D; Bachtold A
    Science; 2009 Aug; 325(5944):1107-10. PubMed ID: 19628818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy Dissipation in Fluid Coupled Nanoresonators: The Effect of Phonon-Fluid Coupling.
    De S; Aluru NR
    ACS Nano; 2018 Jan; 12(1):368-377. PubMed ID: 29286628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersive and dissipative coupling in a micromechanical resonator embedded with a nanomechanical resonator.
    Mahboob I; Perrissin N; Nishiguchi K; Hatanaka D; Okazaki Y; Fujiwara A; Yamaguchi H
    Nano Lett; 2015 Apr; 15(4):2312-7. PubMed ID: 25751406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoherence of interacting Majorana modes.
    Ng HT
    Sci Rep; 2015 Jul; 5():12530. PubMed ID: 26211881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasensitive Displacement Noise Measurement of Carbon Nanotube Mechanical Resonators.
    de Bonis SL; Urgell C; Yang W; Samanta C; Noury A; Vergara-Cruz J; Dong Q; Jin Y; Bachtold A
    Nano Lett; 2018 Aug; 18(8):5324-5328. PubMed ID: 30062893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parametric strong mode-coupling in carbon nanotube mechanical resonators.
    Li SX; Zhu D; Wang XH; Wang JT; Deng GW; Li HO; Cao G; Xiao M; Guo GC; Jiang KL; Dai XC; Guo GP
    Nanoscale; 2016 Aug; 8(31):14809-13. PubMed ID: 27447924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing tiny motions of nanomechanical resonators: classical or quantum mechanical?
    Wei LF; Liu YX; Sun CP; Nori F
    Phys Rev Lett; 2006 Dec; 97(23):237201. PubMed ID: 17280237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bandwidth-limited control and ringdown suppression in high-Q resonators.
    Borneman TW; Cory DG
    J Magn Reson; 2012 Dec; 225():120-9. PubMed ID: 23165232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing Linear to Nonlinear Damping in 2D Semiconductor Nanoelectromechanical Resonators toward a Unified Quality Factor Model.
    Zhang P; Jia Y; Liu Z; Zhou X; Xiao D; Chen Y; Jia H; Yang R
    Nano Lett; 2023 Oct; 23(20):9375-9382. PubMed ID: 37788247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of nonlinear dissipation in piezoresistive diamond nanomechanical resonators by heterodyne down-mixing.
    Imboden M; Williams OA; Mohanty P
    Nano Lett; 2013 Sep; 13(9):4014-9. PubMed ID: 23953003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum entanglement between a nonlinear nanomechanical resonator and a microwave field.
    Meaney CP; McKenzie RH; Milburn GJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056202. PubMed ID: 21728625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oscillation control of carbon nanotube mechanical resonator by electrostatic interaction induced retardation.
    Yasuda M; Takei K; Arie T; Akita S
    Sci Rep; 2016 Mar; 6():22600. PubMed ID: 26935657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissipation in ultrahigh quality factor SiN membrane resonators.
    Chakram S; Patil YS; Chang L; Vengalattore M
    Phys Rev Lett; 2014 Mar; 112(12):127201. PubMed ID: 24724675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.