These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
327 related articles for article (PubMed ID: 25524329)
1. Transcriptomic analysis of the late stages of grapevine (Vitis vinifera cv. Cabernet Sauvignon) berry ripening reveals significant induction of ethylene signaling and flavor pathways in the skin. Cramer GR; Ghan R; Schlauch KA; Tillett RL; Heymann H; Ferrarini A; Delledonne M; Zenoni S; Fasoli M; Pezzotti M BMC Plant Biol; 2014 Dec; 14():370. PubMed ID: 25524329 [TBL] [Abstract][Full Text] [Related]
2. A sense of place: transcriptomics identifies environmental signatures in Cabernet Sauvignon berry skins in the late stages of ripening. Cramer GR; Cochetel N; Ghan R; Destrac-Irvine A; Delrot S BMC Plant Biol; 2020 Jan; 20(1):41. PubMed ID: 31992236 [TBL] [Abstract][Full Text] [Related]
3. The common transcriptional subnetworks of the grape berry skin in the late stages of ripening. Ghan R; Petereit J; Tillett RL; Schlauch KA; Toubiana D; Fait A; Cramer GR BMC Plant Biol; 2017 May; 17(1):94. PubMed ID: 28558655 [TBL] [Abstract][Full Text] [Related]
5. Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis. Ali MB; Howard S; Chen S; Wang Y; Yu O; Kovacs LG; Qiu W BMC Plant Biol; 2011 Jan; 11():7. PubMed ID: 21219654 [TBL] [Abstract][Full Text] [Related]
6. Combined physiological, transcriptome, and cis-regulatory element analyses indicate that key aspects of ripening, metabolism, and transcriptional program in grapes (Vitis vinifera L.) are differentially modulated accordingly to fruit size. Wong DC; Lopez Gutierrez R; Dimopoulos N; Gambetta GA; Castellarin SD BMC Genomics; 2016 May; 17():416. PubMed ID: 27245662 [TBL] [Abstract][Full Text] [Related]
7. Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening. Böttcher C; Burbidge CA; Boss PK; Davies C BMC Plant Biol; 2013 Dec; 13():222. PubMed ID: 24364881 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison. Pilati S; Perazzolli M; Malossini A; Cestaro A; Demattè L; Fontana P; Dal Ri A; Viola R; Velasco R; Moser C BMC Genomics; 2007 Nov; 8():428. PubMed ID: 18034875 [TBL] [Abstract][Full Text] [Related]
9. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. Deluc LG; Quilici DR; Decendit A; Grimplet J; Wheatley MD; Schlauch KA; Mérillon JM; Cushman JC; Cramer GR BMC Genomics; 2009 May; 10():212. PubMed ID: 19426499 [TBL] [Abstract][Full Text] [Related]
10. Transcriptomic network analyses of leaf dehydration responses identify highly connected ABA and ethylene signaling hubs in three grapevine species differing in drought tolerance. Hopper DW; Ghan R; Schlauch KA; Cramer GR BMC Plant Biol; 2016 May; 16(1):118. PubMed ID: 27215785 [TBL] [Abstract][Full Text] [Related]
11. Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening. Fortes AM; Agudelo-Romero P; Silva MS; Ali K; Sousa L; Maltese F; Choi YH; Grimplet J; Martinez-Zapater JM; Verpoorte R; Pais MS BMC Plant Biol; 2011 Nov; 11():149. PubMed ID: 22047180 [TBL] [Abstract][Full Text] [Related]
12. Comparative physiological, metabolomic, and transcriptomic analyses reveal developmental stage-dependent effects of cluster bagging on phenolic metabolism in Cabernet Sauvignon grape berries. Sun RZ; Cheng G; Li Q; Zhu YR; Zhang X; Wang Y; He YN; Li SY; He L; Chen W; Pan QH; Duan CQ; Wang J BMC Plant Biol; 2019 Dec; 19(1):583. PubMed ID: 31878879 [TBL] [Abstract][Full Text] [Related]
13. Gene expression analyses in individual grape (Vitis vinifera L.) berries during ripening initiation reveal that pigmentation intensity is a valid indicator of developmental staging within the cluster. Lund ST; Peng FY; Nayar T; Reid KE; Schlosser J Plant Mol Biol; 2008 Oct; 68(3):301-15. PubMed ID: 18642093 [TBL] [Abstract][Full Text] [Related]
14. VviERF6Ls: an expanded clade in Vitis responds transcriptionally to abiotic and biotic stresses and berry development. Toups HS; Cochetel N; Gray D; Cramer GR BMC Genomics; 2020 Jul; 21(1):472. PubMed ID: 32646368 [TBL] [Abstract][Full Text] [Related]
16. Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (vitis vinifera) fruit. Rienth M; Torregrosa L; Luchaire N; Chatbanyong R; Lecourieux D; Kelly MT; Romieu C BMC Plant Biol; 2014 Apr; 14():108. PubMed ID: 24774299 [TBL] [Abstract][Full Text] [Related]
17. iTRAQ-based protein profiling provides insights into the central metabolism changes driving grape berry development and ripening. Martínez-Esteso MJ; Vilella-Antón MT; Pedreño MÁ; Valero ML; Bru-Martínez R BMC Plant Biol; 2013 Oct; 13():167. PubMed ID: 24152288 [TBL] [Abstract][Full Text] [Related]
18. Transcriptional analysis of late ripening stages of grapevine berry. Guillaumie S; Fouquet R; Kappel C; Camps C; Terrier N; Moncomble D; Dunlevy JD; Davies C; Boss PK; Delrot S BMC Plant Biol; 2011 Nov; 11():165. PubMed ID: 22098939 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression. Sweetman C; Wong DC; Ford CM; Drew DP BMC Genomics; 2012 Dec; 13():691. PubMed ID: 23227855 [TBL] [Abstract][Full Text] [Related]