BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 25524409)

  • 1. Acute effects of muscle vibration on sensorimotor integration.
    Lapole T; Tindel J
    Neurosci Lett; 2015 Feb; 587():46-50. PubMed ID: 25524409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Afferent-induced facilitation of primary motor cortex excitability in the region controlling hand muscles in humans.
    Devanne H; Degardin A; Tyvaert L; Bocquillon P; Houdayer E; Manceaux A; Derambure P; Cassim F
    Eur J Neurosci; 2009 Aug; 30(3):439-48. PubMed ID: 19686433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid-rate paired associative stimulation of the median nerve and motor cortex can produce long-lasting changes in motor cortical excitability in humans.
    Quartarone A; Rizzo V; Bagnato S; Morgante F; Sant'Angelo A; Girlanda P; Siebner HR
    J Physiol; 2006 Sep; 575(Pt 2):657-70. PubMed ID: 16825301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensorimotor integration to cutaneous afferents in humans: the effect of the size of the receptive field.
    Tamburin S; Fiaschi A; Andreoli A; Marani S; Zanette G
    Exp Brain Res; 2005 Dec; 167(3):362-9. PubMed ID: 16078031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deficit of sensorimotor integration in normal aging.
    Degardin A; Devos D; Cassim F; Bourriez JL; Defebvre L; Derambure P; Devanne H
    Neurosci Lett; 2011 Jul; 498(3):208-12. PubMed ID: 21600958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of cutaneous and proprioceptive inputs in sensorimotor integration and plasticity occurring in the facial primary motor cortex.
    Pilurzi G; Ginatempo F; Mercante B; Cattaneo L; Pavesi G; Rothwell JC; Deriu F
    J Physiol; 2020 Feb; 598(4):839-851. PubMed ID: 31876950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of water immersion on short- and long-latency afferent inhibition, short-interval intracortical inhibition, and intracortical facilitation.
    Sato D; Yamashiro K; Yoshida T; Onishi H; Shimoyama Y; Maruyama A
    Clin Neurophysiol; 2013 Sep; 124(9):1846-52. PubMed ID: 23688919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-latency sensory afferent inhibition: conditioning stimulus intensity, recording site, and effects of 1 Hz repetitive TMS.
    Fischer M; Orth M
    Brain Stimul; 2011 Oct; 4(4):202-9. PubMed ID: 22032735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of short-latency afferent inhibition and short-interval intracortical inhibition by test stimulus intensity and motor-evoked potential amplitude.
    Miyaguchi S; Kojima S; Sasaki R; Tamaki H; Onishi H
    Neuroreport; 2017 Dec; 28(18):1202-1207. PubMed ID: 29064955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-and long-latency afferent inhibition of the human leg motor cortex by H-reflex subthreshold electrical stimulation at the popliteal fossa.
    Kato T; Sasaki A; Nakazawa K
    Exp Brain Res; 2023 Jan; 241(1):249-261. PubMed ID: 36481937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological sex differences in afferent-mediated inhibition of motor responses evoked by TMS.
    Turco CV; Rehsi RS; Locke MB; Nelson AJ
    Brain Res; 2021 Nov; 1771():147657. PubMed ID: 34509460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcallosal sensorimotor integration: effects of sensory input on cortical projections to the contralateral hand.
    Swayne O; Rothwell J; Rosenkranz K
    Clin Neurophysiol; 2006 Apr; 117(4):855-63. PubMed ID: 16448846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory afferent inhibition within and between limbs in humans.
    Bikmullina R; Bäumer T; Zittel S; Münchau A
    Clin Neurophysiol; 2009 Mar; 120(3):610-8. PubMed ID: 19136299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of short-latency afferent inhibition and emergence of afferent facilitation following neuromuscular electrical stimulation.
    Mang CS; Bergquist AJ; Roshko SM; Collins DF
    Neurosci Lett; 2012 Oct; 529(1):80-5. PubMed ID: 22985510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human brain cortical correlates of short-latency afferent inhibition: a combined EEG-TMS study.
    Ferreri F; Ponzo D; Hukkanen T; Mervaala E; Könönen M; Pasqualetti P; Vecchio F; Rossini PM; Määttä S
    J Neurophysiol; 2012 Jul; 108(1):314-23. PubMed ID: 22457460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between short latency afferent inhibition and long interval intracortical inhibition.
    Udupa K; Ni Z; Gunraj C; Chen R
    Exp Brain Res; 2009 Nov; 199(2):177-83. PubMed ID: 19730839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short and long latency afferent inhibition in Parkinson's disease.
    Sailer A; Molnar GF; Paradiso G; Gunraj CA; Lang AE; Chen R
    Brain; 2003 Aug; 126(Pt 8):1883-94. PubMed ID: 12805105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short latency afferent inhibition and facilitation in patients with writer's cramp.
    Kessler KR; Ruge D; Ilić TV; Ziemann U
    Mov Disord; 2005 Feb; 20(2):238-42. PubMed ID: 15368612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired Sensorimotor Integration in Restless Legs Syndrome.
    Lin Y; Wang Y; Zhan S; Ding Y; Hou Y; Wang L; Wang Y
    Front Neurol; 2018; 9():568. PubMed ID: 30050496
    [No Abstract]   [Full Text] [Related]  

  • 20. Differential effect of muscle vibration on intracortical inhibitory circuits in humans.
    Rosenkranz K; Rothwell JC
    J Physiol; 2003 Sep; 551(Pt 2):649-60. PubMed ID: 12821723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.