Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 25524491)

  • 1. 96-well format-based microfluidic platform for parallel interconnection of multiple multicellular spheroids.
    Kim JY; Fluri DA; Kelm JM; Hierlemann A; Frey O
    J Lab Autom; 2015 Jun; 20(3):274-82. PubMed ID: 25524491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis.
    Frey O; Misun PM; Fluri DA; Hengstler JG; Hierlemann A
    Nat Commun; 2014 Jun; 5():4250. PubMed ID: 24977495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Digital microfluidics for automated hanging drop cell spheroid culture.
    Aijian AP; Garrell RL
    J Lab Autom; 2015 Jun; 20(3):283-95. PubMed ID: 25510471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D spherical microtissues and microfluidic technology for multi-tissue experiments and analysis.
    Kim JY; Fluri DA; Marchan R; Boonen K; Mohanty S; Singh P; Hammad S; Landuyt B; Hengstler JG; Kelm JM; Hierlemann A; Frey O
    J Biotechnol; 2015 Jul; 205():24-35. PubMed ID: 25592049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seamless Combination of Fluorescence-Activated Cell Sorting and Hanging-Drop Networks for Individual Handling and Culturing of Stem Cells and Microtissue Spheroids.
    Birchler A; Berger M; Jäggin V; Lopes T; Etzrodt M; Misun PM; Pena-Francesch M; Schroeder T; Hierlemann A; Frey O
    Anal Chem; 2016 Jan; 88(2):1222-9. PubMed ID: 26694967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transitioning from multi-phase to single-phase microfluidics for long-term culture and treatment of multicellular spheroids.
    McMillan KS; Boyd M; Zagnoni M
    Lab Chip; 2016 Sep; 16(18):3548-57. PubMed ID: 27477673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and Operation of Microfluidic Hanging-Drop Networks.
    Misun PM; Birchler AK; Lang M; Hierlemann A; Frey O
    Methods Mol Biol; 2018; 1771():183-202. PubMed ID: 29633214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards automated production and drug sensitivity testing using scaffold-free spherical tumor microtissues.
    Drewitz M; Helbling M; Fried N; Bieri M; Moritz W; Lichtenberg J; Kelm JM
    Biotechnol J; 2011 Dec; 6(12):1488-96. PubMed ID: 22102438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.
    Sakai Y; Hattori K; Yanagawa F; Sugiura S; Kanamori T; Nakazawa K
    Biotechnol J; 2014 Jul; 9(7):971-9. PubMed ID: 24802801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Digital microfluidics for spheroid-based invasion assays.
    Bender BF; Aijian AP; Garrell RL
    Lab Chip; 2016 Apr; 16(8):1505-13. PubMed ID: 27020962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug cytotoxicity and signaling pathway analysis with three-dimensional tumor spheroids in a microwell-based microfluidic chip for drug screening.
    Chen Y; Gao D; Liu H; Lin S; Jiang Y
    Anal Chim Acta; 2015 Oct; 898():85-92. PubMed ID: 26526913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid Production and Recovery of Cell Spheroids by Automated Droplet Microfluidics.
    Langer K; Joensson HN
    SLAS Technol; 2020 Apr; 25(2):111-122. PubMed ID: 31561747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Layer-by-layer Collagen Deposition in Microfluidic Devices for Microtissue Stabilization.
    McCarty WJ; Prodanov L; Bale SS; Bhushan A; Jindal R; Yarmush ML; Usta OB
    J Vis Exp; 2015 Sep; (103):. PubMed ID: 26485274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug screening of biopsy-derived spheroids using a self-generated microfluidic concentration gradient.
    Mulholland T; McAllister M; Patek S; Flint D; Underwood M; Sim A; Edwards J; Zagnoni M
    Sci Rep; 2018 Oct; 8(1):14672. PubMed ID: 30279484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accessing 3D microtissue metabolism: Lactate and oxygen monitoring in hepatocyte spheroids.
    Weltin A; Hammer S; Noor F; Kaminski Y; Kieninger J; Urban GA
    Biosens Bioelectron; 2017 Jan; 87():941-948. PubMed ID: 27665516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bioprinted Liver-on-a-Chip for Drug Screening Applications.
    Knowlton S; Tasoglu S
    Trends Biotechnol; 2016 Sep; 34(9):681-682. PubMed ID: 27291461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microfluidic chip with a U-shaped microstructure array for multicellular spheroid formation, culturing and analysis.
    Fu CY; Tseng SY; Yang SM; Hsu L; Liu CH; Chang HY
    Biofabrication; 2014 Mar; 6(1):015009. PubMed ID: 24589876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-organ chip co-culture of neurospheres and liver equivalents for long-term substance testing.
    Materne EM; Ramme AP; Terrasso AP; Serra M; Alves PM; Brito C; Sakharov DA; Tonevitsky AG; Lauster R; Marx U
    J Biotechnol; 2015 Jul; 205():36-46. PubMed ID: 25678136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies of anticancer drug cytotoxicity based on long-term HepG2 spheroid culture in a microfluidic system.
    Zuchowska A; Kwapiszewska K; Chudy M; Dybko A; Brzozka Z
    Electrophoresis; 2017 Apr; 38(8):1206-1216. PubMed ID: 28090668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic co-culture of liver tumor spheroids with stellate cells for the investigation of drug resistance and intercellular interactions.
    Chen Y; Sun W; Kang L; Wang Y; Zhang M; Zhang H; Hu P
    Analyst; 2019 Jul; 144(14):4233-4240. PubMed ID: 31210202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.