These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 25524511)

  • 41. Juvenile prey induce antipredator behaviour in adult predators.
    de Almeida ÂA; Janssen A
    Exp Appl Acarol; 2013 Mar; 59(3):275-82. PubMed ID: 22923143
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Prey and Pollen Food Choice Depends on Previous Diet in an Omnivorous Predatory Mite.
    Schuldiner-Harpaz T; Coll M; Weintraub PG
    Environ Entomol; 2016 Aug; 45(4):995-8. PubMed ID: 27271945
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effects of a windborne pollen-provisioning cover crop on the phytoseiid community in citrus orchards in Israel.
    Warburg S; Inbar M; Gal S; Salomon M; Palevsky E; Sadeh A
    Pest Manag Sci; 2019 Feb; 75(2):405-412. PubMed ID: 29952069
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Artificial and factitious foods support the development and reproduction of the predatory mite Amblyseius swirskii.
    Nguyen DT; Vangansbeke D; De Clercq P
    Exp Appl Acarol; 2014 Feb; 62(2):181-94. PubMed ID: 24154947
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Previous and present diets of mite predators affect antipredator behaviour of whitefly prey.
    Meng RX; Janssen A; Nomikou M; Zhang QW; Sabelis MW
    Exp Appl Acarol; 2006; 38(2-3):113-24. PubMed ID: 16596346
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Does feeding on pollen grains affect the performance of
    Nemati A; Riahi E
    Bull Entomol Res; 2020 Aug; 110(4):449-456. PubMed ID: 31813387
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prey consumption rates and compatibility with pesticides of four predatory mites from the family Phytoseiidae attacking Thrips palmi Karny (Thysanoptera: Thripidae).
    Cuthbertson AG; Mathers JJ; Croft P; Nattriss N; Blackburn LF; Luo W; Northing P; Murai T; Jacobson RJ; Walters KF
    Pest Manag Sci; 2012 Sep; 68(9):1289-95. PubMed ID: 22517790
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biological Control of Three Major Cucumber and Pepper Pests: Whiteflies, Thrips, and Spider Mites, in High Plastic Tunnels Using Two Local Phytoseiid Mites.
    Abou Jawdah Y; Ezzeddine N; Fardoun A; Kharroubi S; Sobh H; Atamian HS; Skinner M; Parker B
    Plants (Basel); 2024 Mar; 13(6):. PubMed ID: 38592899
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Generalist red velvet mite predator (Balaustium sp.) performs better on a mixed diet.
    Muñoz-Cárdenas K; Fuentes LS; Cantor RF; Rodríguez CD; Janssen A; Sabelis MW
    Exp Appl Acarol; 2014 Jan; 62(1):19-32. PubMed ID: 23990039
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Amblyseius orientalis shows high consumption and reproduction on Polyphagotarsonemus latus in China.
    Zhang Y; Sheng F; Wang E; Lv J; Xu X
    Exp Appl Acarol; 2023 Dec; 91(4):561-569. PubMed ID: 37870734
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Impact of factitious foods and prey on the oviposition of the predatory mites Gaeolaelaps aculeifer and Stratiolaelaps scimitus (Acari: Laelapidae).
    Navarro-Campos C; Wäckers FL; Pekas A
    Exp Appl Acarol; 2016 Sep; 70(1):69-78. PubMed ID: 27388446
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Efficacy of indigenous predatory mites (Acari: Phytoseiidae) against the citrus rust mite Phyllocoptruta oleivora (Acari: Eriophyidae): augmentation and conservation biological control in Israeli citrus orchards.
    Maoz Y; Gal S; Argov Y; Domeratzky S; Melamed E; Gan-Mor S; Coll M; Palevsky E
    Exp Appl Acarol; 2014 Jul; 63(3):295-312. PubMed ID: 24623155
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Selecting native perennial plants for ecological intensification in Mediterranean greenhouse horticulture.
    Rodríguez E; González M; Paredes D; Campos M; Benítez E
    Bull Entomol Res; 2018 Oct; 108(5):694-704. PubMed ID: 29198200
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transgenerational loss and recovery of early learning ability in foraging predatory mites.
    Reichert MB; Christiansen IC; Seiter M; Schausberger P
    Exp Appl Acarol; 2017 Mar; 71(3):243-258. PubMed ID: 28409405
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Feeding Rate of Predatory Mites on Life Stages of Bemisia tabaci Mediterranean Species.
    Cuthbertson AG
    Insects; 2014 Jul; 5(3):609-14. PubMed ID: 26462828
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A simple molecular method for rapid identification of commercially used Amblyseius and Neoseiulus species (Acari: Phytoseiidae).
    Syromyatnikov MY; Kokina AV; Belyakova NA; Kozlova EG; Popov VN
    Zootaxa; 2018 Mar; 4394(2):270-278. PubMed ID: 29690376
    [TBL] [Abstract][Full Text] [Related]  

  • 57. TESTING SIDE-EFFECTS OF COMMON PESTICIDES ON A. SWIRSKII UNDER GREENHOUSE CIRCUMSTANCES.
    Audenaert J; Vissers M; Gobin B
    Commun Agric Appl Biol Sci; 2014; 79(2):207-10. PubMed ID: 26084099
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Population dynamics of mites in slow-release sachets used in biological control: a new study methodology.
    Gallego JR; Solano-Rojas Y; Tiseyra B; Gamez M; Cabello T
    Exp Appl Acarol; 2022 Aug; 87(4):325-335. PubMed ID: 35984583
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Demographic analysis of fenpyroximate and thiacloprid exposed predatory mite Amblyseius swirskii (Acari: Phytoseiidae).
    Ghasemzadeh S; Qureshi JA
    PLoS One; 2018; 13(11):e0206030. PubMed ID: 30439960
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Functional Response and Prey Preference of Neoseiulus bicaudus (Mesostigmata: Phytoseiidae) to Three Important Pests in Xinjiang, China.
    Zhang YN; Jiang JY; Zhang YJ; Qiu Y; Zhang JP
    Environ Entomol; 2017 Jun; 46(3):538-543. PubMed ID: 28398551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.