These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 25524620)

  • 1. Dielectrophoretically controlled Fresnel zone plate.
    Chrimes AF; Khodasevych I; Mitchell A; Rosengarten G; Kalantar-zadeh K
    Lab Chip; 2015 Feb; 15(4):1092-100. PubMed ID: 25524620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable focusing properties using optofluidic Fresnel zone plates.
    Shi Y; Zhu XQ; Liang L; Yang Y
    Lab Chip; 2016 Nov; 16(23):4554-4559. PubMed ID: 27785508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical Manipulation along an Optical Axis with a Polarization Sensitive Meta-Lens.
    Markovich H; Shishkin II; Hendler N; Ginzburg P
    Nano Lett; 2018 Aug; 18(8):5024-5029. PubMed ID: 29949377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel tuneable optical elements based on nanoparticle suspensions in microfluidics.
    Kayani AA; Zhang C; Khoshmanesh K; Campbell JL; Mitchell A; Kalantar-Zadeh K
    Electrophoresis; 2010 Mar; 31(6):1071-9. PubMed ID: 20309917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals.
    Cheng KT; Liu CK; Ting CL; Fuh AY
    Opt Express; 2007 Oct; 15(21):14078-85. PubMed ID: 19550680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarization-Independent Metasurface Lens Based on Binary Phase Fresnel Zone Plate.
    Baine J; Tang J; Li X
    Nanomaterials (Basel); 2020 Jul; 10(8):. PubMed ID: 32727123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffraction theory for azimuthally structured Fresnel zone plate.
    Vierke T; Jahns J
    J Opt Soc Am A Opt Image Sci Vis; 2014 Feb; 31(2):363-72. PubMed ID: 24562035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dielectrophoresis-based 'Lab-on-a-chip' devices for programmable binding of microspheres to target cells.
    Borgatti M; Altomare L; Abonnec M; Fabbri E; Manaresi N; Medoro G; Romani A; Tartagni M; Nastruzzi C; Di Croce S; Tosi A; Mancini I; Guerrieri R; Gambari R
    Int J Oncol; 2005 Dec; 27(6):1559-66. PubMed ID: 16273212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiency improvements in a dichroic dye-doped liquid crystal Fresnel lens.
    Jull EIL; Wahle M; Wyatt PJM; Ellis C; Cowling SJ; Goodby JW; Usami K; Gleeson HF
    Opt Express; 2019 Sep; 27(19):26799-26806. PubMed ID: 31674554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Planar silicon microrings as wavelength-multiplexed optical traps for storing and sensing particles.
    Lin S; Crozier KB
    Lab Chip; 2011 Dec; 11(23):4047-51. PubMed ID: 22011760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffractive optical devices produced by light-assisted trapping of nanoparticles.
    Muñoz-Martínez JF; Jubera M; Matarrubia J; García-Cabañes A; Agulló-López F; Carrascosa M
    Opt Lett; 2016 Jan; 41(2):432-5. PubMed ID: 26766732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of high-resolution diffractive X-ray optics by ptychographic coherent diffractive imaging.
    Vila-Comamala J; Diaz A; Guizar-Sicairos M; Mantion A; Kewish CM; Menzel A; Bunk O; David C
    Opt Express; 2011 Oct; 19(22):21333-44. PubMed ID: 22108984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual focal point electro-optic lens with a Fresnel-zone plate on a PLZT ceramic.
    Tatebayashi T; Yamamoto T; Sato H
    Appl Opt; 1992 May; 31(15):2770-5. PubMed ID: 20725208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dielectrophoresis microsystem with integrated flow cytometers for on-line monitoring of sorting efficiency.
    Wang Z; Hansen O; Petersen PK; Rogeberg A; Kutter JP; Bang DD; Wolff A
    Electrophoresis; 2006 Dec; 27(24):5081-92. PubMed ID: 17161009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectrophoretic platforms for bio-microfluidic systems.
    Khoshmanesh K; Nahavandi S; Baratchi S; Mitchell A; Kalantar-zadeh K
    Biosens Bioelectron; 2011 Jan; 26(5):1800-14. PubMed ID: 20933384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential Cell-Processing System by Integrating Hydrodynamic Purification and Dielectrophoretic Trapping for Analyses of Suspended Cancer Cells.
    Park J; Komori T; Uda T; Miyajima K; Fujii T; Kim SH
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31905986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optofluidic variable-focus lenses for light manipulation.
    Seow YC; Lim SP; Lee HP
    Lab Chip; 2012 Oct; 12(19):3810-5. PubMed ID: 22885654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metallic Fresnel zone plate implemented on an optical fiber facet for super-variable focusing of light.
    Kim H; Kim J; An H; Lee Y; Lee GY; Na J; Park K; Lee S; Lee SY; Lee B; Jeong Y
    Opt Express; 2017 Nov; 25(24):30290-30303. PubMed ID: 29221059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D confinement of the focal spot of plasmonic Fresnel zone plate lens using gold bowtie nanoantenna.
    Feng D
    J Opt Soc Am A Opt Image Sci Vis; 2014 Sep; 31(9):2070-4. PubMed ID: 25401448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optofluidic light modulator integrated in lab-on-a-chip.
    Paiè P; Bragheri F; Claude T; Osellame R
    Opt Express; 2017 Apr; 25(7):7313-7323. PubMed ID: 28380855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.